Main Features

- Universal input voltage range (90 264 V_{AC})
- Input surge current limiting
- 400 W rated power (440 W peak up to 10 s)
- High efficiency up to 94%
- Low stand-by consumption (<0.5 W)
- 12, 24, 36 or 48 V_{DC} standard output voltages
- Active PFC, EN61000-3-2 compliant (Class C, >25 % load).
- Low earth / touch leakage current
- Over temperature protection
- OV, OC and SC protections.
- Stand-by +5 V, 2 A and auxiliary / fan 12 V_{DC} , 1 A outputs.
- Remote On / Off signal
- Power good and remote sense signals
- Sealed, potted package IP67 rated, fits 1U applications
- ANSI/AAMI ES60601-1 and IEC/EN 60601-1 3rd ed. Compliant to 2XMoPP, BF appliances compatible
- EN 60601-1-2 4th ed. for immunity compliance
- UL/IEC 60950-1 and UL/IEC 62368-1 safety approval
- RoHS 3 compliant (Directive 2015/863/EU)
- Medical version compatible with 4000 m altitude operation

DESCRIPTION

DDP400 and MDP400, SC series, are sealed, full potted, compact, high efficiency, small form factor AC-DC power supplies.

The series provide a steady 400 W of regulated DC power through the full 90 to 264 V_{AC} input range. A 3.27" x 8.34" x 1.65" form factor, enable designers to integrate it into 1U applications.

By converting energy at a typical 94% efficiency, the DDP400 and MDP400 SC series generate less heat facilitating thermal management in space constrained environments, resulting in very high reliability.

Both the DDP and MDP SC series are available in four standard output voltages: 12, 24, 36, 48 V_{DC} offer an auxiliary 12 V_{DC} and a standby 5 V_{DC} outputs. Available control signals include Power Good (Power_OK), remote On/off (PS_ON) and remote sense (+RS).

The sealed and full potted package allows an IP67 ingress protection index, and can be installed in contact with thermo-conductive part of the system so to transfer heat by conduction, therefore, enhancing performances.

When conduction cooled, or convection cooled with its optional heat sink assembled, the SC series can deliver full output power from -20 to 50 °C. It can operate up to 70 °C with de-rating and is capable to start up from – 30 °C.

Protection features do include fuse on each AC lines, input under-voltage lockout (IUV), output over-current (OC), output short-circuit (SC), output over-voltage (OV) and over-temperature (OT).

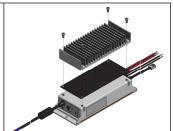
The MDP400 range comply with the 3rd edition of the UL/IEC 60601-1 safety standards for medical equipment offering 2x MoPP protection grade and BF appliance compatibility. The DDP400 range comply with the UL/IEC 60950-1 and UL/IEC 62368-1 standards for Audio Video and IT equipment. Both the series meets the EN55032 EMC limits of Class B for conducted and radiated emissions as well as the IEC/EN 61000-3 and IEC/EN 61000-4 EMC standards. MDP400 comply with EN 60601-1-2 4th ed. for immunity.

MARKET SEGMENTS AND APPLICATIONS

- Video Wall Display and Entertainment
- **Industrial and Process Control**
- **Telecommunications**

- Laboratory Equipment
- Test and Measurement Equipment
- Medical applications

MODEL CODING AND OUTPUT RATINGS


Model Grade and Output Power	Output Nominal Voltage	Package/Fan Options	Medical protection grade
ITE: DDP400-	12 V _{DC} : US12- ITE: DDP400- 24 V _{DC} : US24-	Cooled Conduction (Convention Cooling, CC	Means of Patient Protection
Medical: MDP400-	36 V _{DC} : US36-	Sealed Conduction/Convection Cooling: SC-	PP (*) Only applicable on Medical range
	48 V _{DC} : US48-		3 11

D				12 24				
M	DP400	-	US	36 48	-	SC	-	(PP)*

Heat sink can be ordered as an accessory using the code:

DDP-HS

Mounting kit includes 4x screws (M4x10), and the thermally conductive graphite sheet

Model Number	V1 [V]	I1 ¹ Convection No heat sink (A)	I1 ² Conduction Heat sink (A)	V1 ³ Ripple (mV)	V2 (V)	I2 ¹ Rated (A)	V2 ³ Ripple [mV]	5 V _{SB}	I5V _{SB} ¹ Rated (A)	5V _{SB} ³ Ripple (mV)
DDP/MDP400-US12-SC (-PP)	12	29.2 4	33.3	120	12	1	240	5	2	50
DDP/MDP400-US24-SC (-PP)	24	14.6 ⁴	16.7	240	12	1	240	5	2	50
DDP/MDP400-US36-SC (-PP)	36	9.7 4	11.1	360	12	1	240	5	2	50
DDP/MDP400-US48-SC (-PP)	48	7.3 4	8.3	480	12	1	240	5	2	50

¹ The combined output power of V1, V2 and 5 V_{SB} for all models, when convection cooled and V_{IN} ≥ 180 V_{RMS} , must not exceed 350 W up to 50 °C, and 240 W at 70 °C ambient temperature. See de-rating curves below.

INPUT SPECIFICATIONS

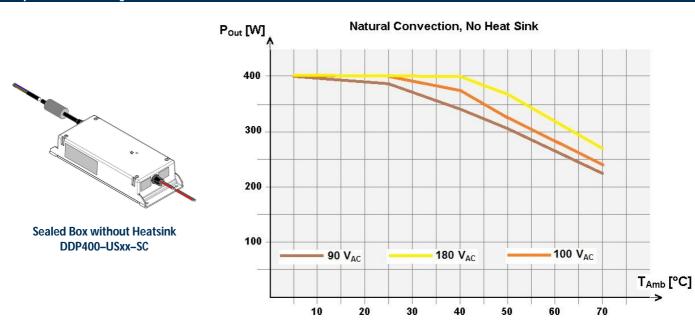
Specification	Test Conditions / Notes	Min.	Nominal	Max.	Units	
AC Input Voltage	PS starts and operates at 90 V _{AC} at all load conditions	90	100-240	264	V_{AC}	
DC Input Voltage		170	-	270	V_{DC}	
Input Frequency		47	50/60	440	Hz	
Input Current	RMS at 180 V_{AC} , maximum load RMS at 90 V_{AC} , maximum load	-	-	2.5 5	Α	
Inrush Current (peak)	265 V _{AC} , full load, cold start.	-	-	20	Α	
Fusing	2X Time Lag 6.3 A, 250 V on L and N	-	-	6.3	Α	
Efficiency	230 V_{AC} , From 50% to full load At 20% full load At 115 V_{AC} , 20% rated load At 100% load	- - -	94 90 90 92	- - -	%	
Input Power Consumption	Power on, 115-230 V _{RMS} , no load Stand by, 115-230 V _{RMS} , no load	-	1 0.4	1.5 0.5	W	
Power Factor	At full rated load, 115 V_{AC} 60 Hz and 230 V_{AC} 50 Hz input voltages	0.95	-	-	-	
Harmonic Current Fluctuations and Flicker	Complies with EN-61000-3-2 Class C at 230 V _{AC} 50 Hz, >50 W load. Complies with EN-61000-3-3 at nominal voltages and full load.					
Leakage Current	Normal conditions, 240 V _{RMS} , 60 Hz.	-	-	300	μΑ	

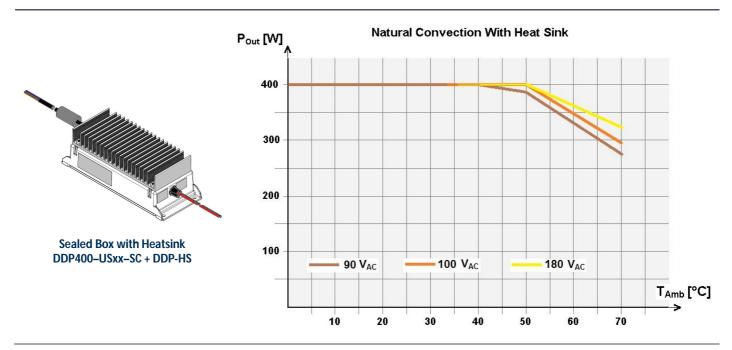
 $^{^2}$ The combined output power of V1, V2 and 5V_{SB} for all models, when conduction cooled or convection cooled with heat sink mounted, must not exceed 400 W up to 50 °C, and 300 at 70 °C ambient temperature.

³ Peak-to-Peak measured at 20 MHz Bandwidth.

⁴ Convection / Conduction output current ratings, do refer to <50 °C ambient temperature and V_{IN} ≥ 180 V_{RMS}.

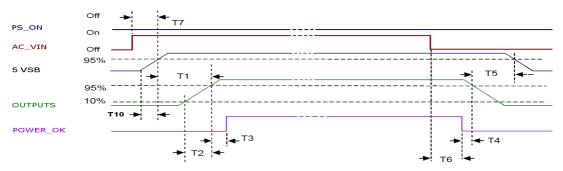
 $^{^5}$ In any case, the chassis hot spot temperature T_{C} should never exceed 90 $^{\circ}\text{C}.$

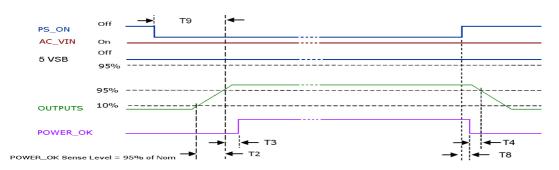



OUTPUT SPECIFICATIONS

Specification	Test Conditions / Notes	Min.	Nom.	Max.	Units
	12 V _{DC}	-	12	-	
Va Outract Vallege	24 V _{DC}	-	24	-	V
V1 Output Voltage	36 V _{DC}	-	36	-	
	$48 V_{DC}$ ±0.5 % set point accuracy on all outputs	-	48	-	
	All models, convection cooling			350	
V1 Output Power Rating	All models, conduction cooling / heat sink			400	W
V Toutput Tower Rating	All models, peak power (≤ 10 s)	_	_	440	VV
	All versions.			110	
V2 Output Voltage	Load on V2: from 5 to 1000 mA	11.25	12.5	13.75	V
. 3	Load on V1: from 0.1 to 16.7 A				
V2 Output Current	All models, convection/forced air cooling	-	-	1	Α
5V _{SB} Output Voltage	All models (3% set point accuracy)	-	5	-	V
5V _{SB} Output Current	All models, convection cooling	-	-	1.5	Α
•	All models, conduction cooling / heat sink	-	-	2	
V1 Voltage Adjustment Range		±5	-	-	%V1
	V_{AC} : 90 – 264 V_{RMS}				
	V1 Load: 0 – 33.3 A (12 V _{DC})				
	$0 - 16.7 \text{ A} (24 \text{ V}_{DC})$				
V1 Load-Line-Cross Regulation	$0 - 11.1 \text{ A} (36 \text{ V}_{DC})$	-	-	±2	%V1
	0 - 8.3 A (48 V _{DC})				
	V2 Load: 0 – 1 A				
	5V _{SB} Load: 0 – 2 A V _{AC} : 90 – 264 V _{RMS}				
	V _{AC} : 90 – 264 V _{RMS} V1 Load: 0 – 33.3 A (12 V _{DC})				
	$0 - 16.7 \text{ A} (12 \text{ V}_{DC})$				
5V _{SB} Load-Line-Cross regulation	0 – 10.7 A (24 VBC) 0 – 11.1 A (36 V _{DC})		_	±5	%5V _{SB}
3 V SB LOad-Line-of 033 Tegulation	0 – 8.3 A (48 V _{DC})	_	-	13	100 A 2B
	V2 Load: 0 – 1 A				
	5 V _{SB} Load: 0 – 2 A				
V1 Line Regulation	V_{AC} : 90 – 264 V_{RMS}	-	-	±0.1	%V1
	25 % load changes at 1 A/µs				
Transient Response	12 V _{DC} at 2200 µF Load / I _{OUT} > 0.5 A				
(Voltage Deviation)	24 V_{DC} at 1000 μF Load / I_{OUT} > 0.5 A		_	±5	%V1
V1, 5V _{SB}	36 V_{DC} at 820 μF Load / $I_{OUT} > 0.5$ A			±3	$%5V_{SB}$
1 1/ 3 2 3B	48 V_{DC} at 560 μF Load / I_{OUT} > 0.5 A				
	5 V _{SB} at 560 µF Load / I _{OUT} > 0.1 A				
V1 Ripple & Noise	All models, Peak-to-peak, 20 MHz BW.	-	-	1	%V1
Start-up Rise Time	100 nF ceramic and 10µF tantalum to the load.	E		0E	mc
Start-up Rise Tillle	90 <v<sub>IN<264, any load conditions. V1 in regulation after PS_ON is asserted</v<sub>	5	-	85 200	ms
Start-up Delay	V1 in regulation after AC is applied	_	_	750	ms
otal t up bolay	5V _{SB} in regulation after AC is applied			500	1113
	At 500 mA output current, V1 in regulation		10		%V1
Turn-on Overshoot	within 50 ms.	_	10	_	%V2
			10		$%V_{SB}$
	At nominal V _{IN} , 400 W, for all outputs	-	16	-	
Hold-up Time	At nominal V _{IN} , 365 W, for all outputs	-	20	-	ms
	At nominal V _{IN} , 200 W, for all outputs	-	35	-	
Minimum Load (*)	All models; V1, V2 and 5V _{SB}	0	-	-	Α
	At nominal V _{IN} , 25 °C ambient				
Mar. 1	12 V _{DC}	-	-	33.000	_
Maximum Load Capacitance	24 V _{DC}	-	-	16.000	μF
	36 V _{DC}	-	-	10.000	
Tomporature Drift	48 V _{DC}	1.2	-	7.000	m\//°C
Temperature Drift		-1.2	-	+1.2	mV/°C

^(*) when the load on the main output is less than 100 mA, V2 output voltage might regulate below its minimum value. Contact ENEDO for details.


Output Power De-rating Curves


SIGNALS / CONTROLS AND TIMING

Signal	Notes	Min	Тур	Max	Unit
PS_ON	Active low, +5 V TTL signal compatible. Input low voltage	0	-	2.0	V
	Input high voltage (I _{IN} = 200 μA)	3.0	-	-	V
	V1 and V2 disabled when PS_ON is open				
	5 V _{SB} not affected by PS_ON				
	V1 and V2 enabled with PS_ON connected to RTN				
P_OK	+5 V TTL compatible				
	Logic level low (<10 mA sinking)	-	-	0.7	V
	Logic level high (100 µA sourcing)	2.4	-	5	V
	Low to high time after V1 in regulation	0.05	-	0.1	S
	Power down warning time	1	-	-	Ms
5 V _{SB} output	Active and in regulation after a 90 <v<sub>AC<264 is applied</v<sub>	-	-	200	Ms
	5 V _{SB} not affected by PS_ON				

Above waveforms are expected with AC Input ON/OFF:

Standby on - Main outputs on	50 ms ≤ T1 ≤ 250 ms
Main output Rise Time	5 ms ≤ T2 ≤ 110 ms
5 V _{SB} Rise Time	4 ms ≤ T10 ≤ 20 ms
Main outputs On – P_OK delay	25 ms ≤ T3 ≤ 100 ms
Power down warning ¹	T4 ≥ 1 ms
Main Output off – Standby off ²	T5 ≥ 1.2 s
Hold-up time (AC off – P_OK low)	$T6 \ge 15 \text{ ms } (115/230 \text{ V}_{AC})$
AC_ON - Standby turn on time	T7 ≤ 500 ms

Above waveforms are expected with PS_ON Signal ON/OFF state change:

Main Output Rise Time	5 ms ≤ T2 ≤ 110 ms
Main Outputs on – P_OK delay	25 ms ≤ T3 ≤ 100 ms
Power down warning ¹	1 ms ≤ T4 ≤ 5 ms
PS_ON - Main Output (off) Timing	T8 ≤ 1 ms
PS_ON - Main Output (on) Timing	T9 ≤ 200 ms

 $^{^1\}text{T4}$ parameter measurement setup will assume at least 10 % of the maximum load on each output.

 $^{^2}$ T5 parameter measurement setup will assume 50 % of the maximum load on 5 $\ensuremath{V_{SB}}$

PROTECTION FEATURES

Specification	Test Conditions / Notes	Min.	Nominal	Max.	Units
Input Under Voltage	Auto-recovering, hiccup mode.	60	75	-	V_{AC}
Input Fuse	2X Time Lag 6.3 A, 250 V on L and N	-	-	6.3	Α
Over Current	At nominal input voltages. V1: Hiccup mode. auto-recovering. V2: PTC limiting, auto-recovering. 5 V _{SB} : Hiccup mode, auto-recovering.	110	-	155	%I1 _{MAX}
Short Circuit	At nominal input voltages. V1: Hiccup mode. auto-recovering. V2: PTC limiting, auto-recovering. 5V _{SB} : Hiccup mode, auto-recovering.	-	-	-	
Over Voltage	$\begin{array}{c} 12 V_{DC} \\ 24 V_{DC} \\ 36 V_{DC} \\ 48 V_{DC} \\ 5 V_{SB} \\ Shut \ down, \ latch-off. \end{array}$	110	-	136	%V _{NOM}
Over Temperature (on primary stage)	Shut down, latch off.	-	-	-	
Over Temperature (on secondary side)	Hiccup mode, auto-recovering.	-	-	-	
Isolation Primary to Secondary	Reinforced (2x MoPP)	5660 4000	-	-	$V_{DC} \ V_{AC}$
Isolation Input to Earth	Basic (1x MoPP)	1500			V_{AC}
Isolation V1 to V2	Functional	100	-	-	V_{DC}
Isolation Output to Earth	Basic (1x MoPP)	1500	-	-	V_{AC}

ENVIRONMENTAL SPECIFICATIONS

Specification	Test Conditions / Notes	Min	Nominal	Max	Units
•	PS starts up at -30 °C				
Operating Temperature Range	See graphs above for output power de-rating against T_{Amb} and V_{In} .	-20	-	70	°C
Storage Temperature Range	•	-40	-	85	°C
Humidity	RH, Non-condensing Operating Non-operating	-	-	90 95	% %
Operating Altitude		-	-	4000	m
Shock	EN 60068-2-27 Operating: Half sine, 30 g, 18 ms, 3 axes, 6x each Non-Operating: Half sine, 50 g, 11 ms, 3 axes, 6x			ive).	
Vibration	EN 60068-2-64 Operating: Sine,10 – 500 Hz, 1 g, 3 axes, 1 oct/mi Random, 5 – 500 Hz, 0.02 g ² /Hz, 1 g _{RMS} , Non-Operating: 5 – 500 Hz, 2.46 g _{RMS} (0.0122 g ² /	3 axes, 30 m			
MTBF	Full Load, 120 V _{AC} , 50 °C ambient 70 % Duty cycle, Telcordia Issue 1	400.000	-	-	Hours
Useful Life	Low line range, 200 W, 40 °C ambient, natural convention.	-	4	-	Years
Cooling	Convection with or without heat sink and conduction providing an adequate thermal path between the unit and the external environment. Case hot spot temperature, Tc, should not exceed 90 °C in any working condition.	AC topat			DC Output Signal

ELECTROMAGNETIC COMPATIBILITY (EMC) – EMISSIONS

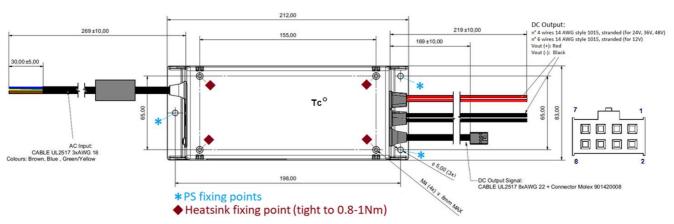
Phenomenon	Conditions / Notes	Standard	Equipment/Performance Class
Conducted	115 V _{RMS} , 230 V _{RMS} . Maximum load. 4 dB minimum margin	EN 55032 (ITE) EN 55011 (ISM) EN 60601-1-2 (Medical)	В
Radiated	At 10 m distance	EN 55032 (ITE) EN 55011 (ISM) EN 60601-1-2 (Medical)	В
Line Voltage Fluctuation and Flicker	At 20%, 50% and 100% maximum load. Nominal input voltages.	EN 61000-3-3	
Harmonic Current Emission	Nominal input voltages. Output load > 50 W.	EN 61000-3-2	С

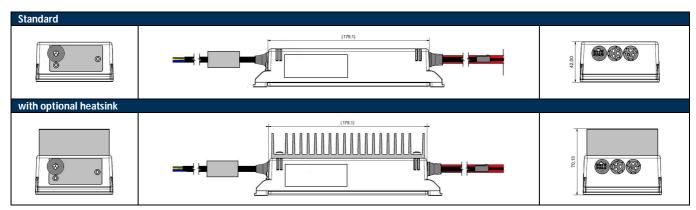
ELECTROMAGNETIC COMPATIBILITY EMC) – IMMUNITY

Phenomenon	Conditions / Notes	Standard	Test Level	Performance criteria
	Reference standard for the medical version Reference standards for ITE	EN 60601-1-2, 4 th e EN 55024	dition	
ESD	15 kV air discharge, 8 kV contact, at any point of the system.	EN 61000-4-2	4	А
Radiated Field	3 V/m, 80-1000 MHz, 1 KHz/2 Hz 80% AM. Dwell time is 3 sec for 2 Hz modulation Dwell time is 1 sec for 1KHz modulation	EN 61000-4-3	3	А
Electric Fast Transient	±2 kV on AC power port for 1 minute; ±1 kV on signal/control lines	EN 61000-4-4	3	Α
Surge	± 2kV line to line; ± 4 KV line to earth; on AC power port; ±0.5 kV for outdoor cables	EN 61000-4-5	3	A B
Conducted RF Immunity	3 V _{RMS} , 0,15-80 MHz, 1 KHz/2 Hz 80% AM	EN 61000-4-6	3	А
	Dip to 30% for 5 cycle (10 ms) Dip to 40% for 5 cycles (100 ms)	EN61000-4-11 EN61000-4-11		A B
Dips and Interruptions	Dip to 70% for 25 cycles (500 ms)	EN61000-4-11		В
	Drop-out to 5% for 10 ms	EN61000-4-11		В
	Interrupts > 95% for 5 s	EN61000-4-11		В

SAFETY AGENCIES APPROVALS

Certification Body	Safety Standards and file numbers	Category
CSA/UL	CSA C22.2 No. 60950-1, UL 60950-1 and UL 62368-1	Audio Video and Information Technology Equipment
	CSA C22.2 No.601.1, ANSI/AAMI ES60601-1 3rd edition	Medical
IEC IECEE CB Certification	IEC/EN 60950-1 and IEC/EN 62368-1	Audio Video and Information Technology Equipment
	IEC/EN 60601-1 3rd edition	Medical
CE	Low Voltage Directive (LDV) 2006/95/EC	Audio Video and Information Technology Equipment
	Low Voltage Directive (LDV) 2007/47/EC MDD	Medical


OUTLINE DRAWING AND CONNECTIONS


Overall dimensions: 83 x 212 x 42 mm (3.27 x 8.34 x 1.65 in)

83 x 212 x 70.13 mm (3.27 x 8.34 x 2.76 in) with heatsink

Weight: 1300 g (2.87 lb)

1665 g (3.67 lb) with heatsink

Connections	Wires Gauge and Length	Assignment	Colour/Pin
AC Input	3x 18AWG, black external insulation, 300V, 105°C,	Live (L)	Brown
	UL2517 cord, 310 \pm 10 mm extension from	Neutral (N)	Blue
	grommet.	Protective Earth (PE)	Green Yellow
DC Output	12 V _{DC} version: 6x 14AWG, Style 1015, 600V, 105°C, 260±10 mm	3x (2x) +V1 Output (+V1)	Red
	24, 36, 48 V _{DC} versions: 4x 14AWG, Style 1015, 600V, 105°C, 260±10 mm	3x (2x) V1 Return (RTN)	Black
Auxiliary Voltages	Wires: 8x 22AWG, black external insulation, 300V,	+5 V Stand-by Output (+5V _{SB})	Red / 1
Control Signals	105°C, UL2517 cord, 220 \pm 10 mm extension from	Output Power Good (P_OK)	Green / 2
	grommet to connector.	- Fan Voltage (-V2)	Brown / 3
	Housed by Connector: Molex 90142-0008 Terminals: Molex 90119-0109 (Tin plating)	Remote On/Off (PS_ON)	Grey / 4
		+ Terminal Remote Sense (+RS)	Yellow / 5
		Stand-by/Signals Return (RTN)	Blue / 6
		+ Fan Voltage (+V2)	White / 7
	Mates with Molex 90130-1108 or equivalent Terminals: Tin plating termination	Stand-by/Signals Return (RTN)	Black / 8

Specifications appearing in ENEDO's catalogues and brochures as well as any oral statements are not binding. All descriptions, drawings and other particulars (including dimensions, materials and performance data) given by ENEDO are as accurate as possible but, being given for general information, and are not binding on ENEDO. ENEDO makes thus no representation or warranty as to the accuracy of such material. We assume no liability other than as agreed in the terms of the individual contracts and we reserve the right to make technical modifications in the course of our product development. Our product information solely describes our goods and services and is in no way to be construed or interpreted as a quality or condition guarantee. The aforesaid shall not relieve the customer of its obligation to verify the suitability of our Products for the use or application intended by the purchaser. Customers are responsible for their products and applications. ENEDO assumes no liability from the use of its products outside of specifications. No license is granted to any intellectual property rights by this document