



#### **MAIN FEATURES**

- 90 305 V<sub>AC</sub> Universal input voltage range
- 420 W rated power, 330 W natural convection
- High efficiency (94% typical)
- Low In-rush current (<25 A)</li>
- 48-51 V<sub>DC</sub> adjustable output voltage
- Active PFC, EN61000-3-2 compliant (Class C)
- Low earth leakage current (<250 μA)
- Over temperature protection
- OV, OC, and short circuit protections
- Low profile U-chassis (<38.5 mm)
- IEC/EN/UL 60950-1 and 62368-1 compliance
- UL8750 compliant
- RoHS-3 compliant (EU directive EU 2015/863)
- 4000 m altitude operation













c**FU**us ∈€

#### **DESCRIPTION**

The SLP420-US48-OF is an AC-DC power supplies featuring a compact form factor, high conversion efficiency and high input-to-output isolation grade to SELV requirements.

The SLP4 $^{2}$ 0 provides a steady 420 W of regulated DC power through the full 100 to 277  $V_{AC}$  nominal input voltage range, in an open frame 3.0 x 5.0 x 1.5" form factor.

By converting energy at 94% typical efficiency, the SLP420 generates less heat facilitating thermal management in space constrained systems with poor or without ventilation.

The SLP420 provides a nominal 48 V<sub>DC</sub> regulated output voltage which can be manually adjustable up to 51 V<sub>DC</sub>.

The SLP420 can provide steady 330 W power, in free air cooling, and 420 W, when 600 LFM forced air cooled. It can operate up to 80 °C de-rating the output power and is capable of start up from –30 °C.

The SLP420-US48-OF complies with the IEC/UL 60950-1 and 62368-1 standards for Audio Video and IT equipment and UL8750 for LED lighting applications.

It complies with the EN55032 EMC limits of Class B for conducted emissions as well as the EN55024 for immunity. It complies also with the IEC/EN 61000-3-3 limits for voltage fluctuations/flickers and IEC/EN 61000-3-2 Class C for harmonic content.

# **MARKET SEGMENTS AND APPLICATIONS**

- Video Wall Display and SSL Lighting
- Entertainment professional lighting
- LED moving heads, spot lights, strobes

- Architectural lighting
- Industrial / laser applications
- 3D printing and ATM

#### MODEL CODING AND OUTPUT RATINGS

| Model and Output Power                                 | Output Nominal Voltage               | Package Option         |     |      |
|--------------------------------------------------------|--------------------------------------|------------------------|-----|------|
| Small Form factor, Ac-dc, ITE, 400 W rated:<br>SLP420- | 48-51 V <sub>DC</sub> : <b>-US48</b> | Open Frame: <b>-OF</b> |     |      |
|                                                        | V/4                                  | 141                    | 141 | 1442 |

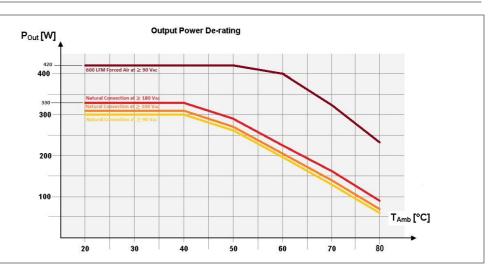
|                | V1      | I1 <sup>1</sup> | l1¹        | V1 <sup>2</sup> |
|----------------|---------|-----------------|------------|-----------------|
| Model Number   | Nominal | Convection      | Forced air | Ripple          |
|                | [V]     | [A]             | [A]        | [mV]            |
| SLP420-US48-OF | 48      | 6.87            | 8.75       | 480             |

<sup>&</sup>lt;sup>1</sup> The output power of V1 must not exceed 420 W when cooled by 600 LFM air flow, and 330 W when natural convection cooled, at ≥ 180 V<sub>AC</sub>, up to 40 °C. See de-rating curves below. In any case, the heat sinks maximum temperature should not exceed +110 °C at 50 °C ambient temperature.

<sup>&</sup>lt;sup>2</sup> Peak-to-Peak measured at 20 MHz Bandwidth.






#### **INPUT SPECIFICATIONS**

| Specification            | Test Conditions / Notes                                                         | Min.    | Nominal | Max.       | Units           |
|--------------------------|---------------------------------------------------------------------------------|---------|---------|------------|-----------------|
| AC Input Voltage         | PS starts and operates at 90 V <sub>AC</sub> at all load conditions             | 90      | 100-277 | 305        | V <sub>AC</sub> |
| Input Frequency          |                                                                                 | 47      | 50/60   | 63         | Hz              |
| Input Current            | RMS at 180 $V_{AC}$ , maximum load RMS at 90 $V_{AC}$ , maximum load            | -       | -       | 2.6<br>5.2 | Α               |
| Inrush Current (peak)    | 277 V <sub>AC</sub> , 25 °C ambient, cold start.                                | -       | -       | 25         | Α               |
| Fusing                   | 2X Time Lag 6.3 A, 250 V on both L and N                                        | -       | -       | 6.3        | Α               |
|                          | At 230 V <sub>AC</sub> : 20% rated load                                         | -       | 90      | -          | %               |
| Efficiency               | 50 – 100 % rated load                                                           | -       | 94      | -          |                 |
| Efficiency               | At 115 V <sub>AC</sub> : 20% rated load                                         | -       | 90      | -          |                 |
|                          | 50 – 100 % rated load                                                           | -       | 92      | -          |                 |
| Input Power Consumption  | Power on, 115-230 V <sub>RMS</sub> , no load                                    | -       | -       | 5          | W               |
| Power Factor             | From 25 to 100% rated load,<br>115 Vac, 60 Hz and 230 Vac, 50 Hz input voltages | 0.92    | -       | -          | -               |
| Harmonic Current         | Complies with EN-61000-3-2 Class C at 230 V <sub>AC</sub> 50 Hz, load :         | >100 W. |         |            |                 |
| Fluctuations and Flicker | Complies with EN-61000-3-3 at nominal voltages and full loa                     | ad.     |         |            |                 |
| Earth Leakage Current    | Normal conditions, 277 V <sub>RMS</sub> , 60 Hz.                                | -       | -       | 250        |                 |
| Earth Leakage Current    | Single fault conditions, 277 V <sub>RMS</sub> , 60 Hz.                          | -       | -       | 500        | μΑ              |

#### **OUTPUT SPECIFICATIONS**

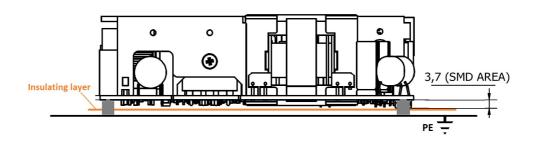
| Specification                          | Test Conditions / Notes                                                                     | Min. | Nom. | Max. | Units                    |
|----------------------------------------|---------------------------------------------------------------------------------------------|------|------|------|--------------------------|
| V1 Output Voltage                      | 0.5% set point accuracy at 1 A load                                                         | -    | 48   | -    |                          |
| V1 Output Power Rating                 | Convection cooling, ≥180 VAC, ≤40 °C                                                        | -    | -    | 330  |                          |
|                                        | Forced air cooling, ≥180 VAC, ≤50 °C                                                        | -    | -    | 420  | W                        |
|                                        | Peak power (≤ 5 s)                                                                          | -    | -    | 440  |                          |
| V1 Voltage Adjustment Range            |                                                                                             | -    | -    | ±5   | %V1                      |
| V1 Load-Line-Cross Regulation          | V <sub>AC</sub> : 100 – 277 V <sub>RMS</sub><br>V1 Load: 0 – 8.75 A                         | -    | -    | ±2   | %V1                      |
| V1 Line Regulation                     | V <sub>AC</sub> : 100 – 277 V <sub>RMS</sub>                                                | -    | -    | ±0.1 | %V1                      |
| Transient Response (Voltage Deviation) | 0 to 100% load changes at 1 A/μs<br>560 μF Load / Ιουτ> 0.5 A                               | -    | -    | ±8   | %V1<br>%5V <sub>SB</sub> |
| V1 Ripple and Noise                    | All models, Peak-to-peak, 20 MHz BW.<br>100 nF ceramic and 10 µF tantalum caps at the load. | -    | -    | 1    | %V1                      |
| Start-up Rise Time                     | 90 <v<sub>IN&lt;277, any load conditions.</v<sub>                                           | 5    | -    | 85   | ms                       |
| Start-up Delay                         | V1 in regulation after AC is applied                                                        | -    | -    | 1    | S                        |
| Turn-on Overshoot                      | At I1 = 500 mA, V1 in regulation within 50 ms                                               | -    | 10   | -    | %V1                      |
| Hold-up Time                           | At nominal V <sub>IN</sub> , 400 W                                                          | -    | 15   | -    | mc                       |
|                                        | At nominal V <sub>IN</sub> , 300 W                                                          | -    | 20   | -    | ms                       |
| Minimum Load                           |                                                                                             | 0    | -    | -    | Α                        |
| Maximum Load Capacitance               | At nominal V <sub>IN</sub> , 25 °C ambient                                                  | -    | -    | 6000 | μF                       |
| Temperature Drift                      |                                                                                             | -1.2 | -    | +1.2 | mV/°C                    |

Those curves do result from measurements made in a static climatic chamber with a specific set-up, therefore, they represent the SLP420 performance approximation once installed into a system where variables are several and not always controllable. Although they are an effective reference, it is always a recommended practice to monitor SLP420 critical components temperature when operating into a system within its rated working conditions, considering also the SLP420 has been certified up to 70 °C ambient temperature.





#### **PROTECTION FEATURES**


| Specification                        | Test Conditions / Notes                                         | Min.   | Nominal | Max.       | Units              |
|--------------------------------------|-----------------------------------------------------------------|--------|---------|------------|--------------------|
| Input Under Voltage Lockout          | Auto recovery, Hiccup Mode                                      | 60     | 75      | -          | $V_{AC}$           |
| Input Fuse                           | 2x Time Lag 6.3 A, 250 V on L1 and L2                           | -      | -       | 6.3        | Α                  |
| Over Current                         | At nominal input voltages.<br>V1: Hiccup mode, auto-recovering. | 110    | -       | 150        | %I1 <sub>MAX</sub> |
| Short Circuit                        | At nominal input voltages.<br>V1: Hiccup mode, auto-recovering. | -      | -       | -          |                    |
| Over Voltage                         | Unit shut down and latch off                                    | 110    | -       | 136        | %V <sub>NOM</sub>  |
| Over Temperature (on secondary side) | Hiccup mode, auto-recovering.                                   | -      | -       | -          |                    |
| Isolation Primary-to- Secondary      | Reinforced                                                      | 4000   | -       | -          | $V_{AC}$           |
| Isolation Input-to-PE                | Basic                                                           | 1500   |         |            | $V_{AC}$           |
| Isolation Output-to-PE               | Basic                                                           | 1500   | -       | -          | $V_{AC}$           |
| Touch Current                        | Normal Condition (NC) Single Fault Condition (SFC)              | -<br>- | -       | 100<br>500 | μΑ                 |

#### **ENVIRONMENTAL SPECIFICATIONS**

| Specification                           | Test Conditions / Notes                                                                                                                                                                                |                                                                                     | Min                         | Nominal                         | Max      | Units  |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------|---------------------------------|----------|--------|
| Operating Temperature Range             | See output power de-rating curves about PS starts up at -30 °C                                                                                                                                         | ove                                                                                 | -20                         | -                               | 80       | °C     |
| De-rated Operating Temperature<br>Range | Natural convection cooling: Linearly do<br>330W at 40 °C, to 90 W at 80 °C (≥180<br>Forced air cooling: Linearly de-rate fro<br>50 °C, to 235 W at 80 °C (≥180 V <sub>AC</sub> ).<br>See graphs above. | V <sub>AC</sub> )                                                                   | -                           | -                               | 80       | °C     |
| Storage Temperature Range               |                                                                                                                                                                                                        |                                                                                     | -40                         | -                               | 85       | °C     |
| Humidity                                | RH, Non-condensing Operating<br>Non-operating                                                                                                                                                          |                                                                                     | -                           | -                               | 95<br>95 | %<br>% |
| Operating Altitude                      |                                                                                                                                                                                                        |                                                                                     | -                           | -                               | 4000     | m      |
| Shock                                   | Non-Operating: Half si                                                                                                                                                                                 | ne, 30 g, 18 ms, 3 ax<br>ne, 50 g, 11 ms, 3 ax                                      |                             |                                 |          |        |
| Vibration                               | Ra                                                                                                                                                                                                     | ne,10 – 500 Hz, 1 g, 3<br>ndom, 5 – 500 Hz, 0<br>- 500 Hz, 2.46 q <sub>RMS</sub> (( | .02 g <sup>2</sup> /Hz, 1 g | <sub>IRMS</sub> , 3 axes, 30 mi | n.       |        |
| MTBF                                    | Full Load, 120 V <sub>AC</sub> , 40 °C ambient<br>80% Duty cycle, Telcordia SR-332 Issue                                                                                                               | 2                                                                                   | 400.000                     | -                               | -        | Hours  |
| Useful Life                             | Low line range, 300 W, 40 °C ambient, convention.                                                                                                                                                      | natural                                                                             | -                           | 4                               | -        | Years  |
| Thermal Considerations                  | The output power de-rating curves are<br>in performance of a power supply onc<br>and ambient temperature.                                                                                              |                                                                                     |                             |                                 |          |        |

#### **Installation Note:**

The SLP420-US48-OF is an IEC Class I safety installation class power supply, therefore, care must be taken, when installing the SLP420 in a system earthed frame, to ensure the safe creepage and clearance distances between it and any face of the power supply, as prescribed by the safety standards IEC/EN60950-1, IEC/EN 62368-1 and UL8750. Where this wouldn't be feasible, an adequate insulation layer shall be placed between the power supply assembly and the system. Below depicted an example where the distance between power supply bottom face and earthed frame is not sufficient.





# **ELECTROMAGNETIC COMPATIBILITY (EMC) – EMISSIONS**

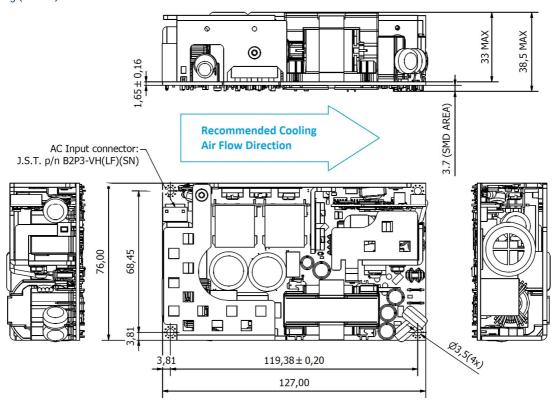
| Phenomenon                           | Conditions / Notes                                                     | Standard       | Equipment<br>Performance Class |
|--------------------------------------|------------------------------------------------------------------------|----------------|--------------------------------|
| Conducted                            | 115 V <sub>RMS</sub> , 230 V <sub>RMS</sub> . Maximum load.            | EN 55032 (ITE) | В                              |
| Radiated                             | Power supply performance to be evaluated when installed into a system. | EN 55032 (ITE) |                                |
| Line Voltage Fluctuation and Flicker | At 20%, 50% and 100% maximum load.  Nominal input voltages.            | EN 61000-3-3   |                                |
| Harmonic Current<br>Emission         | Nominal input voltages.<br>Output load > 100 W.                        | EN 61000-3-2   | С                              |

# **ELECTROMAGNETIC COMPATIBILITY (EMC) – IMMUNITY**

| Phenomenon                     | Conditions / Notes                                                  | Standard                 | Test<br>Level | Performance criteria |
|--------------------------------|---------------------------------------------------------------------|--------------------------|---------------|----------------------|
|                                | Reference std. for ITE Reference std. for Industrial/IMS Equipment  | EN 55024<br>EN 61000-6-2 |               |                      |
| ESD                            | 15 kV air discharge.                                                | EN 61000-4-2             | 4             | Α                    |
| Radiated Field                 | 10 V/m, 80-2700 MHz, 1 KHz 80% AM.                                  | EN 61000-4-3             | 3             | Α                    |
| <b>Electric Fast Transient</b> | ±2 kV on AC power port for 1 minute                                 | EN 61000-4-4             | 3             | Α                    |
| Surge                          | $\pm$ 1 kV line to line; $\pm$ 2 KV line to earth on AC power port. | EN 61000-4-5             | 3             | Α                    |
| <b>Conducted RF Immunity</b>   | 10 V <sub>RMS</sub> , 0,15-80 MHz, 1 KHz 80% AM.                    | EN 61000-4-6             | 3             | Α                    |
| Dips and Interruptions         | 100 - 127 V <sub>AC</sub> :                                         |                          |               |                      |
|                                | Drop-out to 0% for 10 ms                                            | EN61000-4-11             |               | Α                    |
|                                | Drop-out to 0% 1 cycle (20 ms)                                      | EN61000-4-11             |               | В                    |
|                                | Dip to 40% for 200 ms                                               | EN61000-4-11             |               | В                    |
|                                | Dip to 70% for 25 cycles (500 ms)                                   | EN61000-4-11             |               | Α                    |
|                                | Drop-out to 0% for 5 s                                              | EN61000-4-11             |               | В                    |
|                                | 200 – 277 V <sub>AC</sub> :                                         |                          |               |                      |
|                                | Drop-out to 0% for 10 ms                                            | EN61000-4-11             |               | Α                    |
|                                | Drop-out to 0% 1 cycle (20 ms)                                      | EN61000-4-11             |               | В                    |
|                                | Dip to 40% for 200 ms                                               | EN61000-4-11             |               | Α                    |
|                                | Dip to 70% for 25 cycles (500 ms)                                   | EN61000-4-11             |               | Α                    |
|                                | Drop-out to 0% for 5 s                                              | EN61000-4-11             |               | В                    |

# **SAFETY AGENCIES APPROVALS**

| <b>Certification Body</b>  | Safety Standards and file numbers                                               | Category                                            |
|----------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------|
| CSA/UL                     | CSA C22.2 No. 60950-1, UL 60950-1 and UL 62368-1                                | Audio Video and Information<br>Technology Equipment |
|                            | UL8750, CSA C22.2 No 250.13                                                     | Lighting                                            |
| IEC IECEE CB Certification | IEC/EN 60950-1 and IEC/EN 62368-1                                               | Audio Video and Information<br>Technology Equipment |
| CE                         | Directive 2014/35/EU: Electrical Safety: Low Voltage electrical equipment (LVD) | Audio Video and Information<br>Technology Equipment |
|                            | Directive 2014/30/EU: Electromagnetic Compatibility (EMC)                       |                                                     |
|                            | Directive EU 2015/863: RoHS 3                                                   |                                                     |




# **OUTLINE DRAWING AND CONNECTIONS – U-CHASSIS**

| Input Connector                      | Manufacturer and Part Number                                                                                       |        | AC Input                                     |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------|----------------------------------------------|
| AC Input Connector P1                | JST B2P3-VH or equivalent                                                                                          | ,P5    | P1 P1                                        |
| P1 Mating Connector                  | JST VHR-3N (Crimp Terminal Housing) JST SVH-41T-P1.1 (Receptacle Crimp Terminal, 20-16 AWG)                        | P1 1 3 | Pin Function 1 Line 1 2 Not Present 3 Line 2 |
| <b>Protection Earth Connector P5</b> | OSTERRATH_61-1536-11-0031                                                                                          |        | Protection Heart                             |
| P5 Mating Connector                  | Any tin finished 6.35 x 0.81 mm, not-insulated receptacle                                                          |        | P5 GND AC Ground                             |
| Output Connector                     | Manufacturer and Part Number                                                                                       |        |                                              |
| P9 Connector                         | OSTERRATH_61-3162-11/0030                                                                                          |        |                                              |
| P9, Mating Connectors                | CEMBRE: RF-F408P Red AWG22-18 / BF-F408P Blue AWG16-14<br>TYCO: 2-520193-2 Red AWG22-18 / 3-520124-2 Blue AWG16-14 |        | Output Connectors Ref # Function             |
| P10 Connector                        | OSTERRATH_61-1536-11-0031                                                                                          | P10    | P9 +V1<br>P10 V1RTN                          |
| P10 Mating Connectors                | CEMBRE: RF-F608P Red AWG22-18 / BF-F608P Blu AWG16-14<br>TYCO: 2-520183-2 Red AWG22-18 / 3-350819-2 Blue AWG16-14  |        |                                              |

Overall dimensions: 76.2 x 127.0 x 38.5 mm (3.00 x 5.00 x 1.51 in)

Weight: 380 g (0.84 lb)



Specifications appearing in ENEDO's catalogues and brochures as well as any oral statements are not binding. All descriptions, drawings and other particulars (including dimensions, materials and performance data) given by ENEDO are as accurate as possible but, being given for general information, and are not binding on ENEDO. ENEDO makes thus no representation or warranty as to the accuracy of such material. We assume no liability other than as agreed in the terms of the individual contracts and we reserve the right to make technical modifications in the course of our product development. Our product information solely describes our goods and services and is in no way to be construed or interpreted as a quality or condition guarantee. The aforesaid shall not relieve the customer of its obligation to verify the suitability of our Products for the use or application intended by the purchaser. Customers are responsible for their products and applications. ENEDO assumes no liability from the use of its products outside of specifications. No license is granted to any intellectual property rights by this document.