

### PROGRAMMABLE 25W LED DRIVER MESO 25W PLASTIC

### DESCRIPTION

The MESO 25W LED drivers are designed to generate one constant current output from an AC input, and work with most industry standard lighting controls in dimming applications.

### **MAIN FEATURES**

- 120-277 V<sub>AC</sub> Input
- DC Input Rated models available
- Programmable output current via programming tools
- Dimming Options:
  - o Analog Dimming Models
    - 1-10V / 0-10V Dim (dims to OFF)
    - DALI Dimming Models
      - DALI/PWM
- Temperature sensor input (NTC) to protect the LED
- UL Approved, ENEC Approved, CE Mark
- Class 2 Output, Class II isolation
- Long Life

0

RoHS Compliant

# MODEL CODING AND OUTPUT RATINGS

| Minister Constant |  |
|-------------------|--|
|                   |  |



| Model Number                    |                                |                                   | Rating                         |                     |                                            |
|---------------------------------|--------------------------------|-----------------------------------|--------------------------------|---------------------|--------------------------------------------|
| Base Model Opti<br>Number Lette | n Pout M<br>r <sup>1</sup> (W) | lax Vout Mi<br>(V <sub>DC</sub> ) | n Vout M<br>(V <sub>DC</sub> ) | ax lout Set<br>(mA) | <sup>2</sup> lout Max <sup>2</sup><br>(mA) |
| RMLD-500A-P- <sup>3</sup>       | 25                             | 28                                | 56                             | 250                 | 500                                        |
| RMLD-500B-P-                    | 12                             | 12                                | 24                             | 250                 | 500                                        |
| RMLD-700A-P-                    | 25.2                           | 18                                | 36                             | 350                 | 700                                        |
| RMLD-1000A-P-                   | 24                             | 12                                | 24                             | 500                 | 1000                                       |

### **Table 1: Absolute Maximum Driver Ratings**

Note 1: Two characters are required to define the options. See the Option Table for details.

Note 2: The factory set-point for the Analog dimming models (AA and DA) is the lout Set value, while for Digital dimming models (AD and DD), the factory set-point is the lout Max value.

Note 3: Model RMLD-500A-X-XX Derated to 450mA between 50V and 56V to limit output power to 25W

| Option Table  |                                          |  |
|---------------|------------------------------------------|--|
| Option Letter | Description                              |  |
| AA            | AC Input and Analog – 0-10V Dimming      |  |
| AD            | AC Input and Digital – DALI Dimming      |  |
| DA            | AC & DC Input and Analog – 0-10V Dimming |  |
| DD            | AC & DC Input and Digital – DALI Dimming |  |

Model Number example – 1000mA model with DALI dimming option = RMLD-1000A-P-AD



# **INPUT SPECIFICATIONS**

| Specification              | Te                                                                                                 | est Conditions / Notes                                                                             | Min.                 | Nominal | Max.                 | Units           |
|----------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------|---------|----------------------|-----------------|
| AC Input Voltage           | Device starts and oper 120-250 V <sub>AC</sub> for Europe                                          | ates at 90 V <sub>AC</sub> at all load conditions<br>e; 120-277 V <sub>AC</sub> for USA and Canada | 90                   | 120-277 | 305                  | VAC             |
| DC Input Voltage           | 150-250 VDC for Europe                                                                             | e; 150-400 $V_{DC}$ for USA and Canada                                                             | 150                  | -       | 400                  | V <sub>DC</sub> |
| Input Frequency            |                                                                                                    |                                                                                                    | 47                   | 50/60   | 63                   | Hz              |
| Input Current              | 120 V <sub>AC</sub> Rated Load<br>230 V <sub>AC</sub> Rated Load<br>277 V <sub>Ac</sub> Rated Load |                                                                                                    | -<br>-<br>-          | -       | 0.26<br>0.13<br>0.11 | А               |
| Inrush Current (peak)      | 120 V <sub>AC</sub><br>230 V <sub>AC</sub><br>277 V <sub>AC</sub>                                  | Half Value time: 150µs<br>Half Value time: 150µs<br>Half value time: 150µs                         | -                    | -       | 1.5<br>2.5<br>3.5    | А               |
| THD                        | 120 V <sub>AC</sub> Rated Load<br>230 V <sub>AC</sub> Rated Load<br>277 V <sub>Ac</sub> Rated Load |                                                                                                    | -<br>-<br>-          | -       | 16<br>17<br>20       | %               |
| Efficiency                 | 120 V <sub>AC</sub> Rated Load<br>230 V <sub>AC</sub> Rated Load<br>277 V <sub>Ac</sub> Rated Load |                                                                                                    | 81<br>80<br>80       | -<br>-  | 85<br>86<br>85       | %               |
| Stand by Power Consumption | 120 V <sub>AC</sub><br>230 V <sub>AC</sub><br>277 V <sub>AC</sub>                                  |                                                                                                    | -<br>-               | -<br>-  | 0.45<br>0.96<br>1.20 | W               |
| Power Factor               | 120 V <sub>AC</sub> Rated Load<br>230 V <sub>AC</sub> Rated Load<br>277 V <sub>AC</sub> Rated Load |                                                                                                    | 0.97<br>0.95<br>0.94 | -       | -                    |                 |
| Harmonic Current           | Complies with EN-610                                                                               | 00-3-2, Class C                                                                                    |                      |         |                      |                 |

### **OUTPUT SPECIFICATIONS**

| Specification              | Test Conditions / Notes                              | Min. | Nom. | Max. | Units |
|----------------------------|------------------------------------------------------|------|------|------|-------|
| Output Power Rating        | check Table 1, Model Coding and Output Ratings table | 12   | -    | 25   | W     |
|                            | RMLD-500A                                            | 28   | -    | 56   |       |
| Output Voltage             | RMLD-500B                                            | 12   | -    | 24   | V     |
| Output voltage             | RMLD-700A                                            | 18   | -    | 36   | v     |
|                            | RMLD-1000A                                           | 12   | -    | 24   |       |
|                            | RMLD-500A                                            | 250  | -    | 500  |       |
| Output Current             | RMLD-500B                                            | 250  | -    | 500  | m۸    |
| Output current             | RMLD-700A                                            | 350  | -    | 700  | IIIA  |
|                            | RMLD-1000A                                           | 500  | -    | 1000 |       |
| Ripple Current             | All models measured (lout_Pk-pk/RMS)                 | -    | -    | 40   | %     |
| Output Regulation          |                                                      | -    | -    | ±5   | %Iouт |
| Start-up time <sup>2</sup> | With no dimmer connected                             | -    | -    | 600  | ms    |

Note 2: Turn-on time on Analog models is faster than DALI models.

# **PROTECTION FEATURES**

| Specification                  | Test Conditions / Notes                                      | Min. | Nominal | Max. | Units             |
|--------------------------------|--------------------------------------------------------------|------|---------|------|-------------------|
| Output Over Voltage            | Unit shuts Down and latches off after 10 attempts            | 110  | -       | 130  | %V <sub>MAX</sub> |
| Output Short-Circuit           | Unit shuts Down and latches off after 10 attempts            | -    | -       | -    | -                 |
| Over-Temperature Top Case      | Power derating, auto Recovery                                |      | 85      |      | °C                |
| No Load                        | Unit shuts Down and latches off after 3 attempts             |      |         |      |                   |
| Isolation Primary-to-Secondary | Reinforced/double Insulation meets IEC/EN61347-2-13 Class II |      |         |      |                   |



### **APPLICATIONS AND BENEFITS**

MESO is designed for powering LED luminaries with standard lighting controls. The modules operate with:

- Standard Light Switches
- Analog Dimmers (0-10V or 1-10V control)
- DALI controls

The following diagram depicts a typical installation utilizing the MESO 25W:



#### MESO's versatile control features:

- Settable Output Current. Output current value can be set also by the user
- Dimming Options:
- ✓ Analog Dimming input provides 10-100% lout Dimming function and Dim to OFF, includes external Temperature sensor (to 100k NTC thermistor) to protect the LED from over-temperature.
- ✓ Digital Dimming allows direct interface with DALI controls or PWM input. Includes external Temperature sensor (to 100k NTC thermistor) to protect the LED from overtemperature.



### **OUTPUT PROGRAMMABILITY AND OPTIONS:**

MESO models are available with either analog controls (0-10V / 1-10V dimming) or digital controls (DALI / PWM). Each model can be programmed using a Enedo proprietary tool.

### ANALOG CONTROL MODELS (0-10V/1-10V):

The output characteristics of the analog MESO models can be set using the Ozone programming tool, **RSOZ070-PTOOL**. The tool uses a proprietary digital interface so that once programmed, the driver cannot be changed by the ordinary user. The output current is set through 2 rotary switches to between 50% and 100% rating. DIP switches set the fade time and characteristic of the analog dimming.

The following are the features that can be programmed:

- 1. Adjust lout from **50%** to 100% in 10mA increments.
- 2. Fade time of **0**, 2, 5 or 10 seconds.
- 3. 0–10V (Dim to Off) or 1–10V (lout min 10%).



OZONE Programming Tool Order Code: RSOZ070-PTOOL

The Analog control models have 3 signal wires described below:

- <u>Dim (Purple/Grey)</u>: The dimming input can be used to adjust the output setting via a standard commercial wall dimmer, an external control voltage source (1 to 10VDC), or a variable resistor. This input permits 100% to 50% trimming and 100% to 10% dimming. This allows active control of the driver and may be used for trimming and dimming purposes
- <u>Ts (Orange)</u>: The Temperature Sense input may be connected to a 100k NTC thermistor. The thermistor should be located on the LED assembly to monitor its temperature. If the temperature exceeds a predetermined set point, the output current of the module is automatically reduced to regulate the temperature of the LED at a safe level. See Application Notes for details.

### DIGITAL CONTROL MODELS (DALI/PWM):

The output characteristics of the digital MESO models can be set using the DALI programming tool (RHPS368), **RSOZ070-PDALI**. The DALI interface is used to program the MESO driver as well as test the DALI functions. The output current can be set to between 50% and 100% rating.

The following are the features that can be programmed:

- 1. Adjust lout from 50% to **100%** in 10mA increments.
- 2. Set for **DALI** or PWM enabled.



DALI Programming Tool Order Code: RSOZ070-PTOOL

The Digital control models have 3 signal wires described below:

- DALI or PWM Input (yellow/yellow): When DALI enabled, controls the output of the driver through the DALI interface that is compatible with IEC62386. When PWM enabled, the input accepts a pulse width modulated signal. This permits a 0% to 100% dimming of the output current and is compliant with EN 60929.
- <u>Ts (orange)</u>: The Temperature Sense input may be connected to a 100k NTC thermistor. The thermistor should be located on the LED assembly to monitor its temperature. If the temperature exceeds a predetermined set point, the output current of the module is automatically reduced to regulate the temperature of the LED at a safe level. See Application Notes for details.

See Application Note 3, MESO Settings, for details on the programming features.



### **MECHANICAL DETAILS**



Drawing shows model with 0-10 Dimming. With DALI option, the Purple and Grey wires are replaced with Yellow wires.



### **ENVIRONMENTAL SPECIFICATIONS**

| Specification               | Test Conditions / Notes                                                                                                                                                | Min | Nom  | Max | Units |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|-----|-------|
| Top Case Temperature Range  | Refer to the Top Case measurement point                                                                                                                                | -30 | -    | 85  | °C    |
| Ambient Temperature Range   |                                                                                                                                                                        | -30 |      | 55  | °C    |
| Storage Temperature         |                                                                                                                                                                        | -40 | -    | 85  | °C    |
| Operating Relative Humidity | Non-condensing                                                                                                                                                         | 5   | -    | 95  | %     |
| Surface Temperature         | Exposed surfaces temperature under all operating conditions                                                                                                            | -   | -    | 90  | °C    |
| Cooling                     | Convection cooled                                                                                                                                                      |     |      |     |       |
| Shock EN 60068-2-27         | Operating: Half sine, 30 g, 18 ms, 3 axes, 6x each (3 positive and 3 negative).<br>Non-Operating: Half sine, 50 g, 11 ms, 3 axes, 6x each (3 positive and 3 negative). |     |      |     |       |
| Vibration EN 60068-2-64     | Operating: 5 – 500Hz, 1gRMS (0.02 g2/Hz), 3 axes, 30 min.<br>Non-Operating: 5 – 500Hz, 2.46gRMS (0.0122 g2/Hz), 3 axes, 30 min.                                        |     |      |     |       |
| Vibration EN 60068-2-6      | Operating Sine, 10 – 500Hz, 1g, 3 axes, 1 oct/min., 60 min.                                                                                                            |     |      |     |       |
| MTBF                        | Full Load, 40°C Ambient, 80% Duty cycle, Telcordia SR-332 Issue 2                                                                                                      | -   | 800k | -   | Hours |
| Useful Life                 | Nominal V <sub>AC</sub> , Rated load, 40°C Ambient.                                                                                                                    | -   | 44k  | -   | Hours |

## **ELECTROMAGNETIC COMPATIBILITY (EMC) – EMISSIONS**

| Phenomenon                               | Conditions / Notes             | Standard                     | Equipment<br>Performance Class |
|------------------------------------------|--------------------------------|------------------------------|--------------------------------|
| Conducted Emission                       | Test at 230V <sub>AC</sub>     | EN55015                      |                                |
| Conducted Emission                       | Test at 120/277V <sub>AC</sub> | EN55032                      | Class B                        |
| Radiated Emission                        | Test at 230V <sub>AC</sub>     | EN55015                      |                                |
| Conducted and Radiated Emission          | Test at 120/277V <sub>AC</sub> | FCC CFR47- part 15/subpart B | Class B                        |
| Harmonic Current Emissions               |                                | EN61000-3-2                  | Class C                        |
| Voltage Changes, Fluctuation and Flicker |                                | EN61000-3-3                  |                                |

### **ELECTROMAGNETIC COMPATIBILITY (EMC) – IMMUNITY**

| Phenomenon                                                 | Conditions / Notes | Standard      | Note       |
|------------------------------------------------------------|--------------------|---------------|------------|
| Equipment for general lighting purposes -EMC Immunity Req. |                    | EN 61547      |            |
| ESD (Electrostatic Discharge)                              |                    | EN 61000-4-2  |            |
| Radiated Radio-Frequency electromagnetic field             |                    | EN 61000-4-3  |            |
| Electric Fast Transient / Burst                            |                    | EN 61000-4-4  |            |
| Surge                                                      | Level ±1.0kV L-N   | EN 61000-4-5  |            |
| Conducted disturbances induced by Radio-Frequency fields   |                    | EN 61000-4-6  |            |
| Voltage Dips, short interruptions and Voltage Variations   |                    | EN 61000-4-11 |            |
| Non repetitive damped oscillatory transient, Ring wave     | 2.5kV              | ANSI C.62.41  | Category A |

## **SAFETY AGENCIES APPROVALS**

| <b>Certification Body</b> | Safety Standards                                                                                                                                               | Category |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| c <b>FL</b> us            | UL Recognized ANSI / UL8750, CSA C22.2 No.250. Include UL and CSA approval (cURus) as Class 2 output.                                                          |          |
|                           | LED Driver suitable for dry and damp location                                                                                                                  |          |
|                           | IEC/EN 61347-2-13 electronic control gear for LED Modules<br>IEC/EN 62384 DC or AC supplied electronic control gear for LED modules – Performance Requirements |          |
| CE                        | To obtain the "CE Declaration of Conformity" please contact info@enedopower.com                                                                                |          |
| $\bigcirc$                | Independent unit as per EN61347-2-13                                                                                                                           |          |

Specifications appearing in ENEDO's catalogues and brochures as well as any oral statements are not binding. All descriptions, drawings and other particulars (including dimensions, materials and performance data) given by ENEDO are as accurate as possible but, being given for general information, and are not binding on ENEDO. ENEDO makes thus no representation or warranty as to the accuracy of such material. We assume no liability other than as agreed in the terms of the individual contracts and we reserve the right to make technical modifications in the course of our product development. Our product information solely describes our goods and services and is in no way to be construed or interpreted as a quality or condition guarantee. The aforesaid shall not relieve the customer of its obligation to verify the suitability of our Products for their products and applications. ENEDO assumes no liability from the use of its products outside of specifications. No license is granted to any intellectual property rights by this document.