RCB600 SERIES

MAIN FEATURES

- Universal input voltage range (85 264 V_{AC})
- Active PFC, EN 61000-3-2 compliant
- Input surge current limiting (<20 A)
- High power density (23 W/in³)
- Steady 600 W output power available in a 3 x 5 x 1.6" form factor
- Fan speed control function for guiet operation
- Four (4) slots configurable for up to eight (8) outputs
- Output modules series and parallel operation
- Accurate wired current share among paralleled modules
- Remote output voltage programming / control
- Remote output current programming / control
- Output current monitoring signal
- +/- sense terminal for each slot
- Output modules +5V, 10mA bias supply
- Remote single slot or simultaneous inhibit signals
- Power chassis +5V, 200mA bias supply
- AC good signal
- Power good signal for each slot
- Over temperature, OV, OC and SC protections
- EN55011, EN55032 Class B, conducted radiated emissions.
- RoHS 3 compliant (Directive EU 2015/863)

DESCRIPTION

The RCB600 series of modular and configurable AC-DC power supplies provide high performance and wide flexibility in an extremely compact package. The series is capable of a steady 600W from a 3 x 5 x 1.6" package, distributed among four independent and isolated slots where any of the six available output modules may be plugged.

The output modules are rated for 150W and are available in single nominal output voltages of 5, 12, 24 and 48V, and two double nominal output voltages of 12 and 24V. Thanks to their extremely wide output voltage adjustability range and the possibility to connect modules of the same type in series and parallel, the RCB600 offers an unrivalled flexibility.

Advanced functions such as remote output current / voltage control and programming, single slot inhibit and all slots inhibit make the RCB600 interactive with complex industrial and automation systems.

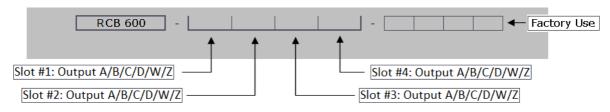
Other available signals include power supply AC-Good and output modules Power-Good and +/- Sense Terminals.

The RCB600 comes in a closed package with a built-in speed-controlled fan to ensure the required airflow while maintaining minimal operational noise, which ultimately enhances the power supply service life time.

Output modules of the same type can be connected in parallel in any number in the same chassis without any OR-ing protection. Paralleling modules across multiple chassis does require OR-ing protection with FET or Diodes. This is also true when operating modules in a N+1 redundant configuration.

Protection features include a fuse on AC lines, input under voltage lockout (IUV), output over-current (OC), output short-circuit (SC), output over-voltage (OV) and over-temperature (OT).

The RCB600 series complies with IEC/EN/UL/CSA 60950-1 and 62368-1 safety standards for Audio Video and IT equipment. It also complies with the Class B limits of the standards EN55011, EN55032 for conducted and radiated emissions, IEC/EN 61000-3 Class A for harmonic content and IEC/EN 61000-4 for EMC immunity.


MARKET SEGMENTS AND APPLICATIONS

- Industrial Process Control and Automation
- Telecommunications

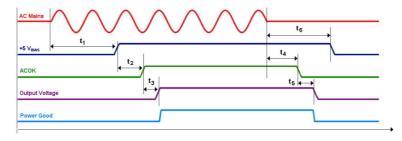
- Laboratory / Analysis Equipment
- Test and Measurement Equipment

MODEL CODING AND OUTPUT AND RATINGS

Use "0" for unused slots. A slot cover bracket will be fitted at factory

The factory might issue a 4 digit-code for a specific configuration which can be used for next and future orders of the same configuration. When ordering an input with no output inserted, simply order "RCB600-XXXX" (Power chassis).

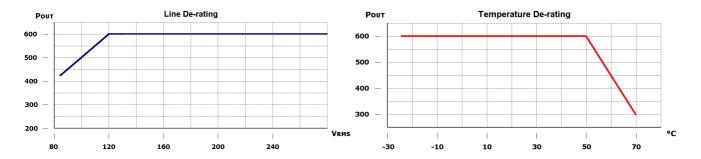
Output Module	Nominal Voltage	Voltage Adjustment	Output Rated Power	Rated Current	Max Current at Nom Voltage	Load Regulation	Over Voltage trip level
Α	5 V _{DC}	1.5 to 7.5 V _{DC}	125 W	25.0 A	25 A	±50 mV	9.5 V
В	$12 V_{DC}$	4.5 to 15 V_{DC}	150 W	15.0 A	12.5 A	±100 mV	18 V
С	$24 V_{DC}$	$9 \text{ to } 30 \text{ V}_{DC}$	150 W	7.5 A	6.25 A	±150 mV	36 V
D	$48 V_{DC}$	18 to 58 V _{DC}	150 W	3.75 A	3.13 A	±300 mV	66 V
W	$2x 12 V_{DC}$	3.3 to 15 V_{DC}	2x 75 W	5.0 A	5.0 A	±50 mV	20 V
Z	$2x 24 V_{DC}$	15 to 38 V _{DC}	2x 75 W	3.125 A	3.125 A	±150 mV	44 V
0 (Zero)		Metal blank	ing plate for unused	slots			


INPUT SPECIFICATIONS

Parameter	Details	Min	Тур	Max	Units
AC input voltage	Nominal range is 100 to 240 V _{RMS}	85		264	V_{RMS}
AC input frequency		47	50/60	63	Hz
DC input voltage		120		300	V_{DC}
Power rating	De-rate by $0.83\%/V_{RMS}$ below $120 V_{RMS}$ (600 W at $120 V_{RMS}$, $450 W$ at $90 V_{RMS}$)			600	W
Input current	At 600 W output and 120 V _{RMS} input			6	Α
Inrush current (peak)	265 V _{RMS} , cold start			20	Α
Fusing	5 x 20 fast acting fuse			8	Α
Input current limit	Maintains power factor		8		Α
Efficiency	Configuration dependent		86	89	%
Idle power	All outputs fitted and enabled		28		W
idle power	All outputs fitted and disabled		21		VV
Power factor	Typical value at 300 W output at 240 V _{RMS}		0.96	0.99	
Hold up	600 W output at 120 V _{RMS} input	17	20	21	ms
UVLO	Turn on only	78		84	V_{RMS}
Over temperature	Internally monitored. Latching	115		125	°C
Reliability	At 40 °C, 80% load			2	FPMH

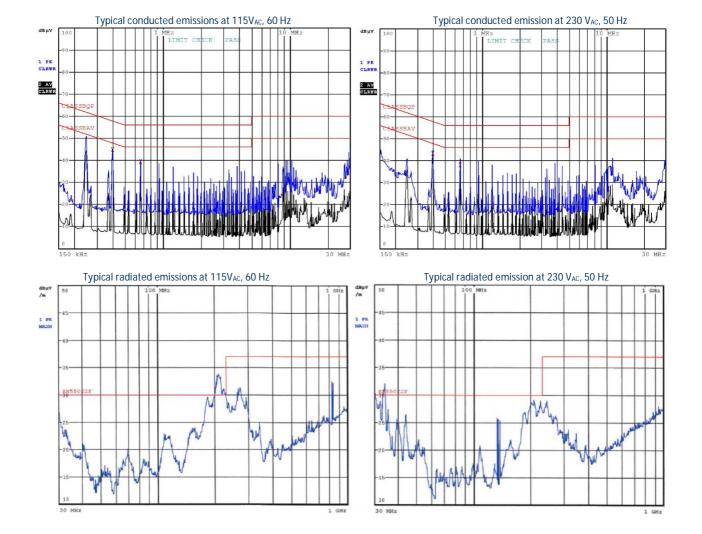
SIGNALS / CONTROLS AND TIMING

Parameter	Details	Min	Тур	Max	Units
Bias voltage	-	4.8	5	5.2	V
Bias current		0		200	mA
Power Good Voltage	PNP open collector with internal 10 $k\Omega$ pull down resistor	8	10	15	V
Power Good Current		0		20	mA
Individual inhibit voltage	Apply ≥ 5 V when used as Global Inhibit	2		15	V
Inhibit current	10 kΩ input impedance	0.2		1.5	mA
Global inhibit voltage		3		15	V
Global inhibit current	5 kΩ input impedance	0.6		3	mA
AC_OK voltage		1		4	V
AC_OK current		-10		20	mA
AC_OK warning	See user manual for exceptions	5			ms


AC Mains asserted – +5V _{BIAS} supply effective	e: t1 = 300 ms	AC Mains de-asserted – ACOK signal Off:	t4 = 15 ms
AC Mains asserted – ACOK signal On:	t1 + t2 = 350 ms	AC Mains de-asserted – Power-Good low:	t4 + t5 = 20 ms
AC Mains asserted – Power-Good high:	t1 + t2 + t3 = 325 ms	AC Mains de-asserted – +5V _{BIAS} supply Off:	t6 = 100 ms

ENVIRONMENTAL, INSTALLATION AND RELIABILITY

Parameter	Details	Min	Max	Units
Storage				
Temperature		-40	+85	°C
Humidity	Relative, non-condensing	5	95	%
Altitude		-200	5000	m
Air Pressure		54	106	kPa
Operating				
Temperature	Full power	-20	50	°C
	De-rating input and output at 2.5% / °C	50	70	
Humidity	Relative, non-condensing	5	95	%
Altitude		-200	4600	m
Air Pressure		69	106	kPa
Acoustic Noise	Variable to input voltage, ambient temperature, load	35	60	dB(A)
	Measured at 1 m from fan intake	00	00	GD(/ t)
Shock	3000 bumps at 10 g (16 ms) half sine wave			
Vibration	1.5 g, 10 to 200 Hz sine wave, 20 g for 15 min in three axes random vibration			
Installation				
Equipment Class				
Installation Category	Category II			
Pollution Degree	2			
Material Group	IIIb (indoor use only)			
Flammability Rating	94V-2			
IP Rating	IP10			
RoHS Compliance	Directive EU 2015/863			
Reliability				
Fan	Precision ball bearing system		2.7	FPMH
Power unit	Input + Transformer modules excluding fan		2	FPMH
Output Modules	See individual output data-sheets		1	FPMH
Warranty			2	Years



INPUT VOLTAGE AND TEMPERATURE DE-RATING

ELECTROMAGNETIC COMPATIBILITY (EMC) – EMISSIONS

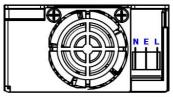
Phenomenon	Conditions / Notes	Standard	Equipment/Performance Class
Conducted	115, 230 V _{AC} at maximum load	EN 55032 (ITE) EN 55011 (ISM)	В
Radiated	115, 230 V _{AC} at 10 m distance	EN 55032 (ITE) EN 55011 (ISM)	В
Line Voltage Fluctuation and Flicker		EN 61000-3-3	Compliant
Harmonic Current Emission	230 V _{AC} , 50 / 60 Hz	EN 61000-3-2	Class A Compliant

ELECTROMAGNETIC COMPATIBILITY (EMC) – IMMUNITY

Phenomenon	Conditions / Notes	Standard	Test Level	Criteria
	Reference standards for ITE Reference standard for Industrial/IMS equipment	EN 55024 EN 61000-6-2		
ESD	15 kV air discharge, 8 kV contact discharge, at any point of the system.	EN 61000-4-2	4	А
Radiated Field	10 V/m, 80-2700 MHz, 1 KHz/2 Hz 80% AM.	EN 61000-4-3	3	Α
Electric Fast Transient	±4 kV on AC power port for 1 minute	EN 61000-4-4	3	Α
Surge	±1 kV line to line, ±2 kV lines to earth (on AC power port)	EN 61000-4-5	4	Α
Conducted RF Immunity	10 V _{RMS} , 0,15-80 MHz, 1 kHz/2 Hz 80% AM.	EN 61000-4-6	3	Α
Dips and Interruptions	230 V _{AC} :			
	Drop-out to 0% for 10 ms	EN61000-4-11		Α
	Dip to 40% for 5 cycles (100 ms)	EN61000-4-11		Α
	Dip to 70% for 25 cycles (500 ms)	EN61000-4-11		Α
	Drop-out to 0% for 2 s	EN61000-4-11		В
	115 V _{AC} :			
	Drop-out to 0% for 10 ms	EN 61000-4-11		Α
	Dip to 40% for 5 cycles (100 ms)	EN 61000-4-11		Α
	Dip to 70% for 25 cycles (500 ms)	EN 61000-4-11		Α
	Drop-out to 0% for 2 s	EN 61000-4-11		В

SAFETY PARAMETERS

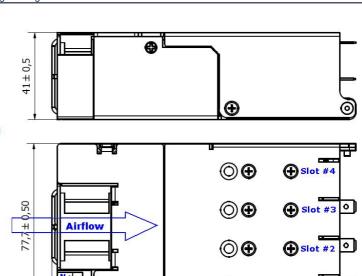
Parameter	Details	Min	Max	Units
Isolation Voltage	Primary to Secondary	4000		V_{RMS}
	Primary to Protection Earth (chassis)	1500		V_{RMS}
	Output to Chassis isolation is guaranteed up to 250 V _{DC}			
	Output to Outputs isolation is guaranteed up to 250 V _{DC}			
Isolation Clearance	Primary to Secondary	7		mm
	Primary to Chassis	2.5		mm
Isolation Creepage	Primary to Secondary	12		mm
	Primary to Chassis	4		mm
Earth Leakage Current	265 V _{AC} , 63 Hz, 25 °C ambient		300	μΑ

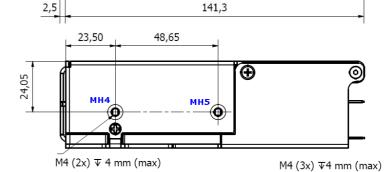

SAFETY AGENCIES APPROVALS

Certification Body	Safety Standards and file numbers	Category
CSA/UL	CSA C22.2 No. 60950-1, UL 60950-1 and UL 62368-1	Audio Video and Information
	UL: E134098-A35-CB-2	Technology Equipment
IEC IECEE	IEC/EN 60950-1 and IEC/EN 62368-1	Audio Video and Information
CB Certification	CB Certificate: DK-49554-UL	Technology Equipment
CE	Directive 2014/35/EU: Electrical Safety: Low Voltage electrical	Audio Video and Information
	equipment (LVD)	Technology Equipment
	Directive 2014/30/EU: Electromagnetic Compatibility (EMC)	
	Directive EU 2015/863: RoHS 3	
	Designed to meet IEC/EN/UL/CSA 61010-1 2nd editio	n

MECHANICAL SPECIFICATIONS - OUTLINE DRAWING AND DIMENSIONS

Specification	Details	Nominal	Units
Dimensions	Height is 1U	77.7 x 136.25 x 41.0	mm
		3.06 x 5.36 x 1.61	in
Weight	Chassis + input	360	g
	Output modules	60	g
	Chassis + input	0.794	lb
	Output modules	0.132	lb
Mounting	Bottom or side mounting through M4 screws	M4	

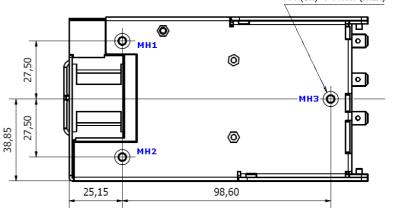

N - Neutral E - Earth


L - Line

SCI	REWS
Power Chassis MH1, MH2	, MH3, MH4, MH5
Screw type	M4
Tightening torque	Tighten to 0.55 Nm (4.87 lb in) (*)
Penetration depth	4.00 mm max, including chassis
Output Modules x 8	
Screw type	M3x4, C/Sink, Posi, Stainless steel
Tightening torque	Tighten to 0.36 Nm (3.19 lb-in) (*)
Penetration depth	Defined by screw
Secondary cover x 2	
Screw type	M3x4, C/Sink, Posi, Stainless steel
Tightening torque	Tighten to 0.36 Nm (3.19 lb-in) (*)
Penetration depth	Defined by screw
Primary Cover x 2	
Screw type	M2.5x4, C/Sink, Posi, Stainless steel
Tightening torque	Tighten to 0.36 Nm (3.19 lb-in) (*)
Penetration depth	Defined by screw
Fan x 2	
Screw type	M3x30, C/Sink, Posi, Stainless steel
Tightening torque	Tighten to 0.36 Nm (3.19 lb-in) (*)
Penetration depth	Defined by screw
(*) Indicated tightening toro	que is the one

recommended by the threaded insert manufacturer and it shall be regarded as a reference only. Over

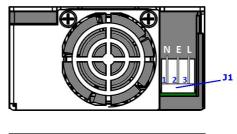
tightening the mounting screws may result in

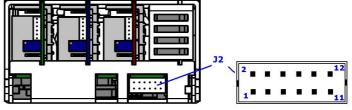


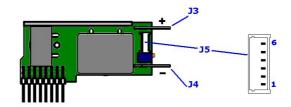
 $133,75 \pm 0,50$

 $\bigcirc \bullet$

⊕ Slot #1




damaged threads.



MECHANICAL SPECIFICATIONS - INPUT / OUTPUT CONNECTIONS

	Pin Assignment
Circuit	Details
	J1
1	Neutral
2	Earth
3	Line
	J2
1	Power Good Slot #1
2	Inhibit Slot #1
3	Power Good Slot #2
4	Inhibit Slot #2
5	Power Good Slot #3
6	Inhibit Slot #3
7	Power Good Slot #4
8	Inhibit Slot #4
9	Global Inhibit
10	AC OK
11	+5V 200mA, Bias Supply
12	COM
	J5
1	-Sense
2	+Sense
3	Voltage Control
	Current Control
4	Current Sharing
	Current Monitor
5	COM
6	+5V 10mA, Bias Supply
	J3
Positive Outpu	ıt (+)
	J4

Negative Output (-)

COUNTERPART CONNECTORS							
Reference	Details	Manufacturer	Housing PN	Terminal PN			
AC Mains Input J1	 5.08 mm (0.200 in), 3 circuits housing, with friction lock, or, any direct equivalent. Crimp terminal, 18-24 AWG, tin finish, or, any direct equivalent. 	Molex	0010013036	0008701031			
Power Unit Signal J2	 2.00 mm (0.079 in) 12 circuits housing with locking ramp, or, any direct equivalent. Crimp terminal 24-30 AWG, gold finish, or, any direct equivalent. 	Molex	0511101260	0503948051			
Output Power J3/J4	 Quick Disconnect Receptacle compatible with PCB mounting TAB, size 0.80X6.35 mm. Tin finish. 	Vogt AG Tyco Electronics	NA	3967 640907-1			
Output Signal J5	 1.25 mm (0.049 in), 6 circuits housing, Crimp terminal 28-32 AWG, tin finish, or, any direct equivalent 	Molex	0510210600	0500588000			

- Notes:
 - 1. Output power terminal and wire current rating must exceed maximum short circuit output current (OP-A: 25*1.25 = 31.25 A)
 - 2. Direct equivalents may be used for any connector parts
 - 3. All cables must be rated 105°C min, equivalent to UL1015.

	Dual Output Modules – OPW / OPZ – Pin Assignment and Outline drawing						
Circuit	Description						
V1 and V2 Outpo MOLEX 0430450		SIGNALS					
1	-V1						
2	-V2						
3	+V1						
4	+V2						
Signals MOLEX 0530480	510	V1-V2					
1	S- (V2)						
2	S+ (V2)						
3	Not connected	***************************************					
4	S- (V1)						

	OPW / OPZ Counterpart Connectors						
Reference	Details	Manufacturer	Housing PN	Crimp Terminal PN			
V1 /V2 Outputs	 Micro-Fit 3.0™ Receptacle Housing, Dual Row, 4 Circuits, Halogen Free. Micro-Fit 3.0™ Crimp Terminal, Female, with Tin (Sn) Plated Phosphor Bronze Contact, 20-24 AWG 	Molex	0430250400	43030-0001			
Signals	 1.25mm Pitch PicoBlade™ Wire-to-Wire and Wire-to-Board Housing, Female, 5 Circuits. 1.25mm Pitch PicoBlade™ Crimp Terminal, Female, 28-32 AWG. 	Molex	51021-0500	50058-8000			

OUTPUT SPECIFICATIONS – MODULE A (RCA-OPA)

Parameter	Test conditions / Notes	Min	Nominal	Max	Units
Output voltage range		1.5	5	7.5	V
Rated current				25	Α
Average output power				125	W
Peak output power	<5 s, 50% duty cycle			187.5	W
Initial voltage accuracy	Factory set units, Measured at sense terminals	-0.5		0.5	$% V_{SET}$
Output voltage adjustment	Manual: 11-turns potentiometer		0.545		V/turn
Load regulation	Measured at sense terminals	-50		50	mV
Line regulation	Measured at sense terminals	-0.1		0.1	$%V_{NOM}$
Cross regulation	Measured at sense terminals	-0.2		0.2	$%V_{NOM}$
Minimum load			0		Α
Output temperature drift		-0.02		0.02	%/°C
Ripple and Noise	20 MHz bandwidth, peak-peak			1	$%V_{NOM}$
Transient response	25% to 75% load transient, at 1A/µs,			1	V
Transient response	recovery to within 10% of V _{SET}			100	μs
Turn on rise time	Monotonic, 10% to 90%	1.5		3.5	ms
Turn on overshoot				0.1	$%V_{SET}$
Turn on dolov	From AC on to Power Good		600	750	ms
Turn on delay	From Enable to Power Good		15	20	ms
Current sharing accuracy				5	%I _{MAX}
Open sense offset	Open sense, voltage offset due to bias currents			2	V_{NOM}
Hold-up voltage				6	V
Isolation to ground	Each terminal			250	V
Over current protection	% of rated current	105		125	%I _{RATED}
Reverse current protection	% of rated current	-6		0	%I _{RATED}
Short circuit protection (Hiccup mode)	Period Duty cycle Voltage threshold (at sense)		125 3 1		ms % V
Over voltage protection	Latching		9.5		V
Over temperature protection	Internally monitored, latching	115		125	°C
	On positive terminal	-1		2	
Sense cable protection	On negative terminal	none		1	V
Power good threshold	Low threshold only		90		%V _{SET}
Output current signal	$I_{SGN} = 0.6 + I_{OUT}/(I_{RTD}*1.25)$	0		110	%I _{RATED}
Current limit control	$I_{LMT} = (V_{CTRL} - 0.6) * I_{RTD} * 1.25$	0		110	%I _{RATED}
Remote voltage control	$V_{OUT} = V_{SET} ((1.8 - V_{CTRL}) / 0.6)$	0		300	%V _{SET}
Bias supply	10 mA max	4.5	5	5.2	V
Reliability	At 40 °C, 80% load			1	FPMH
Warranty	·			2	Years
Wire size	Power cables	12	10		AWG
Weight				60	g
Size	60 mm x 35 mm x 17 mm (2.36 in x 1.38 ir	x 0.67 in)			

OUTPUT SPECIFICATIONS – MODULE B (RCA-OPB)

Parameter	Test conditions / Notes	Min	Nominal	Max	Units
Output voltage range		4.5	12	15	V
Rated current				15	Α
Average output power				150	W
Peak output power	<5 s, 50% duty cycle			225	W
Initial voltage accuracy	Factory set units, Measured at sense terminals	-0.5		0.5	% V _{SET}
Output voltage adjustment	Manual: 11-turns potentiometer		0.954		V/turn
Load regulation	Measured at sense terminals	-100		100	mV
Line regulation	Measured at sense terminals	-0.1		0.1	$%V_{NOM}$
Cross regulation	Measured at sense terminals	-0.2		0.2	$%V_{NOM}$
Minimum load			0		Α
Output temperature drift		-0.02		0.02	%/°C
Ripple and Noise	20 MHz bandwidth, peak-peak			1	$%V_{NOM}$
Transient response	25% to 75% load transient, at 0.5A/μs; recovery to within 10% of V _{SET}			1.5 100	V μs
Turn on rise time	Monotonic, 10% to 90%	1.5		3.5	ms
Turn on overshoot	IVIOLIOTOLIC, 1070 to 7070	1.5		0.1	%V _{SET}
	From AC on to Power Good		600	750	ms
Turn on delay	From Enable to Power Good		15	20	ms
Current sharing accuracy	Trom Enable to rower Good		13	5	%I _{MAX}
•	Open sense, voltage offset due to bias				
Open sense offset	currents			2	V_{NOM}
Hold-up voltage				12.5	V
Isolation to ground	Each terminal			250	V
Over current protection	% of rated current	105		125	%I _{RATED}
Reverse current protection	% of rated current	-6		0	$%I_{RATED}$
Short circuit protection (Hiccup mode)	Period Duty cycle Voltage threshold (at sense)		125 3 2		ms % V
Over voltage protection	Latching		18		V
Over temperature protection	Internally monitored, latching	115		125	°C
•	On positive terminal	-1		2	
Sense cable protection	On negative terminal	none		1	V
Power good threshold	Low threshold only		90	•	%V _{NOM}
Output current signal	$I_{SGN} = 0.6 + I_{OUT}/(I_{RTD}*1.25)$	0		110	%I _{RATED}
Current limit control	$I_{LMT} = (V_{CTRL} - 0.6) * I_{RTD} * 1.25$	0		110	%I _{RATED}
Remote voltage control	$V_{OUT} = V_{SET} ((1.8 - V_{CTRL}) / 0.6)$	0		300	%V _{SET}
Bias supply	10 mA maximum	4.5	5	5.2	V
Reliability	At 40 °C, 80% load			1	FPMH
Warranty				2	Years
Wire size	Power cables	16	14	10	AWG
Weight				60	g
Size	60 mm x 35 mm x 17 mm (2.36 in x 1.38 i	n x 0.67 in)			3

OUTPUT SPECIFICATIONS – MODULE C (RCA-OPC)

Output voltage range 9 24 30 V Rated current 7.5 A A Average output power 150 W Peak output power -5 s, 50% duty cycle 25 W Initial voltage acturacy Factory set units, Measured at sense terminals -0.5 1.9 V/turn Output voltage adjustment Measured at sense terminals -150 150 mV Line regulation Measured at sense terminals -0.10 0.1 %/wom Cross regulation Measured at sense terminals -0.1 0 A W/turn Line regulation Measured at sense terminals -0.1 0 A W/wom Minimum load 0 0 A W/wom A W W/wom A A W	Parameter	Test conditions / Notes	Min	Nominal	Max	Units
Average output power			9	24	30	V
Peak output power	Rated current				7.5	Α
Initial voltage accuracy	Average output power				150	W
Measured at sense terminals	Peak output power	<5 s, 50% duty cycle			225	W
Load regulation Measured at sense terminals -150 150 mV Line regulation Measured at sense terminals -0.1 0.1 %V₀νων Cross regulation Measured at sense terminals -0.2 0.2 %V₀νων Minimum load -0.00 0.2 %°C Output temperature drift -0.02 0.2 %°C Ripple and Noise 20 MHz bandwidth, peak-peak 1 1 %V₀νων Transient response 25% to 75% load transient, at 0.25A/μs; recovery to within 10% of V₅ser 100 μs Turn on rise time Monotonic, 10% to 90% 1.5 3.5 ms Turn on overshoot 600 750 ms Turn on delay From AC on to Power Good 600 750 ms Turn on delay From Enable to Power Good 15 20 ms Current sharing 2 2 %V₀wow Hold-up voltage 2 2 %V₀wow Hold-up voltage 2 2 √Vowow Hold-up voltage	Initial voltage accuracy		-0.5		0.5	% V _{SET}
Line regulation Measured at sense terminals -0.1 0.1 %V _{NOM} Cross regulation Measured at sense terminals -0.2 0.2 %V _{NOM} AN	Output voltage adjustment	Manual: 11-turns potentiometer		1.9		V/turn
Cross regulation Measured at sense terminals -0.2 %V _{NOM} Minimum load 0 A Output temperature drift -0.02 0.02 %°C Ripple and Noise 20 MHz bandwidth, peak-peak 1 %V _{NOM} Transient response 25% to 75% load transient, at 0.25A/µs; recovery to within 10% of V _{SeT} 100 µs Turn on rise time Monotonic, 10% to 90% 1.5 3.5 ms Turn on delay From AC on to Power Good From Enable to Power Good 600 750 ms Current sharing accuracy From Enable to Power Good 15 20 ms Current sharing accuracy Open sense, voltage offset due to bias currents 2 %V _{NOM} Hold-up voltage 25 V sold to to ground 25 V Hold-up voltage 25 V sold to ground 25 V Reverse current protection % of rated current 105 125 ms Short circuit protection Period 125 ms % (Hiccup mode) Voltage threshold (at sense)		Measured at sense terminals	-150		150	mV
Minimum load Output temperature drift -0.02 0.02 %/C Ripple and Noise 20 MHz bandwidth, peak-peak 1 %Vnom Transient response 25% to 75% load transient, at 0.25A/µs; recovery to within 10% of Vser 100 µs Turn on rise time Monotonic, 10% to 90% 1.5 3.5 ms Turn on overshoot 1.5 3.5 ms Turn on delay From AC on to Power Good 600 750 ms From Enable to Power Good 15 20 ms Current sharing accuracy 5 Mlamax 2 %Vnom Open sense offset Open sense, voltage offset due to bias current signal to ground 25 V Hold-up voltage 25 V V Isolation to ground Each terminal 25 V Over current protection % of rated current 105 125 %lanten Reverse current protection % of rated current 6 0 %lanten Williage threshold (lat sense) 3.5 V Over c		Measured at sense terminals				
Output temperature drift -0.02 %°C Ripple and Noise 20 MHz bandwidth, peak-peak 1 %Vnow Transient response 25% to 75% load transient, at 0.25A/µs; recovery to within 10% of VsET 100 µs Turn on rise time Monotonic, 10% to 90% 1.5 3.5 ms Turn on overshoot 75m AC on to Power Good 600 750 ms Turn on delay From AC on to Power Good 15 20 ms Current sharing accuracy 5 %lbmx ysland ms Current sharing accuracy 2 %Vnow ms ysland ysland ms Current sharing accuracy 5 %lbmx 2 %Vnow ysland	Cross regulation	Measured at sense terminals	-0.2		0.2	$%V_{NOM}$
Ripple and Noise 20 MHz bandwidth, peak-peak 1 %Vnom 3 V Transient response 25% to 75% load transient, at 0.25A/μs; recovery to within 10% of Vset 100 μs Turn on rise time Monotonic, 10% to 90% 1.5 3.5 ms Turn on overshoot From AC on to Power Good 600 750 ms Turn on delay From Enable to Power Good 15 20 ms Current sharing accuracy 5 %Nom 5 %Nom Hold-up voltage 25 V 250 V Reverse current protection % of rated current 105 125 %IRATED Reverse current protection % of rated current -6 0 %IRATED Short circuit protection % of rated current -6 0 %IRATED Short circuit protection % of rated current -6 0 %IRATED Chilicup mode) Voltage threshold (at sense) 3.5 V Over voltage protection Latching 3 V Over utrent signal	Minimum load			0		Α
Transient response 25% to 75% load transient, at 0.25A/μs; recovery to within 10% of Vset 100	Output temperature drift		-0.02		0.02	%/°C
Transient response 25% to 75% load transient, at 0.25A/μs; recovery to within 10% of Vset 1.5 3.5 ms 100 Ms 1.5 3.5 ms 100 1.5 1.	Ripple and Noise	20 MHz bandwidth, peak-peak			1	$%V_{NOM}$
Turn on rise time Monotonic, 10% to 90% 1.5 3.5 ms Turn on overshoot 0.1 %V _{SET} Turn on delay From AC on to Power Good 600 750 ms Current sharing accuracy 5 %I _{MAX} Open sense offset Open sense, voltage offset due to bias currents 2 %V _{NOM} Hold-up voltage 25 V Isolation to ground Each terminal 250 V Over current protection % of rated current 105 125 %I _{RATED} Reverse current protection % of rated current -6 0 %I _{RATED} Short circuit protection Period 125 ms Short circuit protection Dutty cycle 3 % (Hiccup mode) Voltage threshold (at sense) 3.5 V Over voltage protection Latching 36 V Sense cable protection Internally monitored, latching 115 125 °C Sense cable protection Internally monitored, latching 10 12 <td>Transient response</td> <td></td> <td></td> <td></td> <td></td> <td>•</td>	Transient response					•
Turn on overshoot 0.1 %Vset Turn on delay From AC on to Power Good 600 750 ms Current sharing accuracy 5 %Uman 5 %Uman Open sense offset Open sense, voltage offset due to bias currents 2 %Vnom Hold-up voltage 25 V Isolation to ground Each terminal 250 V Over current protection % of rated current 105 125 MRATED Reverse current protection % of rated current -6 0 MIRATED Short circuit protection (Hiccup mode) Period 125 ms Short circuit protection Duty cycle 3 % V Over voltage protection Latching 3.5 V Over voltage protection Internally monitored, latching 115 125 °C Sense cable protection Internally monitored, latching 15 2 °C Sense cable protection On positive terminal -1 -1 2 °C <	Turn on rise time	Monotonic 10% to 90%	1.5			
Turn on delay From AC on to Power Good From Enable to Power Good 600 From Enable to Power Good 750 ms Current sharing accuracy 5 %J _{MAX} Open sense offset Open sense, voltage offset due to bias currents 2 %V _{NOM} Hold-up voltage 25 V V Isolation to ground Each terminal 250 V V Over current protection % of rated current 105 (ms.) 125 (ms.) MRAITED Reverse current protection % of rated current -6 (ms.) 0 (ms.) MIRATED Short circuit protection (Hiccup mode) Period 125 (ms.) ms Short circuit protection (Hiccup mode) Duty cycle (ms.) 3.5 (ms.) V Over voltage protection Latching (ms.) 115 (ms.) 125 (ms.) V Over voltage protection Internally monitored, latching (ms.) 115 (ms.) 125 (ms.) V Over temperature protection (Internally monitored, latching (ms.) 115 (ms.) 125 (ms.) V Sense cable protection (Internally monitored, latching (ms.) 115 (ms.) 125 (ms.) V Cense cable		WONOTOTIC, 1070 to 7070	1.5			
Current sharing accuracy 5 MolMAX Open sense offset Open sense, voltage offset due to bias currents 2 %V _{NOM} Hold-up voltage 25 V Isolation to ground Each terminal 25 V Over current protection % of rated current 105 125 %I _{RATED} Reverse current protection % of rated current -6 0 %I _{RATED} Short circuit protection Period 125 ms (Hiccup mode) Duty cycle 3 % (Hiccup mode) Voltage threshold (at sense) 3.5 ∨ Over voltage protection Latching 15 2 °C Sense cable protection Internally monitored, latching 115 125 °C Sense cable protection On positive terminal -1 2 V Output current signal Low threshold only 90 %VsET Output current signal I _{LMT} = (VcTRL - 0.6) * I _{RDT} *1.25 0 110 MRATED Remote voltage control VouT = V		From AC on to Power Good		600		
Current sharing accuracy 5 Moman Open sense offset Open sense, voltage offset due to bias currents 2 %Vnom Hold-up voltage 25 V Isolation to ground Each terminal 250 V Over current protection % of rated current 105 125 %larate Reverse current protection % of rated current -6 0 %larate Short circuit protection Period 125 ms Short circuit protection Duty cycle 3 % % Over voltage protection Latching 36 V Over woltage protection Internally monitored, latching 115 125 °C Sense cable protection Internally monitored, latching 115 125 °C Sense cable protection Internally monitored, latching 115 125 °C Sense cable protection Uniternally monitored, latching 11 9 V Current signal Isom threshold only 90 Williage Williage	Turn on delay					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Current sharing accuracy	Trom Enable to Fower Good		13		
Hold-up voltage Scheme of the currents Scheme of the current Scheme of		Onen sense voltage offset due to hies				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	•					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c} \textbf{Reverse current protection} \\ \textbf{Short circuit protection} \\ \textbf{(Hiccup mode)} \\ & \begin{array}{c} \text{Period} \\ \text{Duty cycle} \\ \text{Voltage threshold (at sense)} \\ \end{array} \\ & \begin{array}{c} 3.5 \\ \text{Over voltage protection} \\ \text{Over temperature protection} \\ \end{array} \\ & \begin{array}{c} \text{Internally monitored, latching} \\ \text{On positive terminal} \\ \text{On negative terminal} \\ \end{array} \\ \begin{array}{c} -1 \\ \text{On nemative terminal} \\ \text{On nemative terminal} \\ \end{array} \\ \begin{array}{c} -1 \\ \text{On positive terminal} \\ \end{array} \\ \begin{array}{c} 0 \\ \text{Output current signal} \\ \end{array} \\ \begin{array}{c} \text{SeNse cable protection} \\ \end{array} \\ \begin{array}{c} \text{Internally monitored, latching} \\ \end{array} \\ \begin{array}{c} 115 \\ \text{On none} \\ \end{array} \\ \begin{array}{c} 0 \\ \text{Internally monitored, latching} \\ \end{array} \\ \begin{array}{c} 115 \\ \text{On none} \\ \end{array} \\ \begin{array}{c} 0 \\ \text{Internally monitored, latching} \\ \end{array} \\ \begin{array}{c} 0 \\ \text{Internally monitored, latching} \\ \end{array} \\ \begin{array}{c} 0 \\ \text{Internally monitored, latching} \\ \end{array} \\ \begin{array}{c} 0 \\ \text{Internally monitored, latching} \\ \end{array} \\ \begin{array}{c} 0 \\ \text{Internally monitored, latching} \\ \end{array} \\ \begin{array}{c} 0 \\ \text{Internally monitored, latching} \\ \end{array} \\ \begin{array}{c} 0 \\ \text{Internally monitored, latching} \\ \end{array} \\ \begin{array}{c} 0 \\ \text{Internally monitored, latching} \\ \end{array} \\ \begin{array}{c} 0 \\ \text{Internally monitored, latching} \\ \end{array} \\ \begin{array}{c} 0 \\ \text{Internally monitored, latching} \\ \end{array} \\ \begin{array}{c} 0 \\ \text{Internally monitored, latching} \\ \end{array} \\ \begin{array}{c} 0 \\ \text{Internally monitored, latching} \\ \end{array} \\ \begin{array}{c} 0 \\ \text{Internally monitored, latching} \\ \end{array} \\ \begin{array}{c} 0 \\ \text{Internally monitored, latching} \\ \end{array} \\ \begin{array}{c} 0 \\ \text{Internally monitored, latching} \\ \end{array} \\ \begin{array}{c} 0 \\ \text{Internally monitored, latching} \\ \end{array} \\ \begin{array}{c} 0 \\ \text{Internally monitored, latching} \\ \end{array} \\ \begin{array}{c} 0 \\ \text{Internally monitored, latching} \\ \end{array} \\ \begin{array}{c} 0 \\ \text{Internally monitored, latching} \\ \end{array} \\ \begin{array}{c} 0 \\ \text{Internally monitored, latching} \\ \end{array} \\ \begin{array}{c} 0 \\ \text{Internally monitored, latching} \\ \end{array} \\ \begin{array}{c} 0 \\ \text{Internally monitored, latching} \\ \end{array} \\ \begin{array}{c} 0 \\ \text{Internally monitored, latching} \\ \end{array} \\ \begin{array}{c} 0 \\ \text{Internally monitored, latching} \\ \end{array} \\ \begin{array}{c} 0 \\ \text{Internally monitored, latching} \\ \end{array} \\ \begin{array}{c} 0 \\ \text{Internally monitored, latching} \\ \end{array} \\ \begin{array}{c} 0 \\ \text{Internally monitored, latching} \\ \end{array} \\ \begin{array}{c} 0 \\ \text{Internally monitored, latching} \\ \end{array} \\ \begin{array}$		Each terminal				•
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		% of rated current	105		125	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Reverse current protection	% of rated current	-6		0	%I _{RATED}
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Duty cycle		3		%
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Over voltage protection					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			115	30	125	
Power good threshold Low threshold only 90 %Vset Output current signal $I_{SGN} = 0.6 + I_{OUT}/(I_{RTD}*1.25)$ 0 110 % I_{RATED} Current limit control $I_{LMT} = (V_{CTRL} - 0.6) * I_{RTD}*1.25$ 0 110 % I_{RATED} Remote voltage control $V_{OUT} = V_{SET}((1.8 - V_{CTRL}) / 0.6)$ 0 300 % V_{SET} Bias supply 10 mA max 4.5 5 5.2 V Reliability At 40 °C, 80% load 1 FPMH Warranty Wire size Power cables 20 18 10 AWG Weight	•					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sense cable protection		•			V
	Power good threshold		HOHE	90	ı	%\/ ₀₅₇
			0	70	110	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
Bias supply 10 mA max 4.5 5 5.2 V Reliability At 40 °C, 80% load 1 FPMH Warranty 2 Years Wire size Power cables 20 18 10 AWG Weight 60 g						
ReliabilityAt 40 °C, 80% load1FPMHWarranty2YearsWire sizePower cables201810AWGWeight60g			-	5		
Warranty2YearsWire sizePower cables201810AWGWeight60g			т. Ј	J		
Wire sizePower cables201810AWGWeight60g		711 40 0, 0070 lodu				
Weight 60 g	•	Power cables	20	18		
		1 OWCI CUDICS	20	10		
Size 60 mm x 35 mm x 17 mm (2.36 in x 1.38 in x 0.67 in)		60 mm v 35 mm v 17 mm /2 36 in v 1 20 in	v 0 67 in)		00	y

OUTPUT SPECIFICATIONS – MODULE D (RCA-OPD)

Parameter	Test conditions / Notes	Min	Nominal	Max	Units
Output voltage range		18	48	58	
Rated current				3.75	Α
Average output power				150	W
Peak output power	Less than 5 s, 50% duty cycle			225	W
Initial voltage accuracy	Factory set units, Measured at sense terminals	-0.5		0.5	$\% V_{SET}$
Output voltage adjustment	Manual: 11-turns potentiometer		3.6		V/turn
Load regulation	Measured at sense terminals	-300		300	mV
Line regulation	Measured at sense terminals	-0.1		0.1	$%V_{NOM}$
Cross regulation	Measured at sense terminals	-0.2		0.2	$%V_{NOM}$
Minimum load			0		Α
Output temperature drift		-0.02		0.02	%/°C
Ripple and Noise	20 MHz bandwidth, peak-peak			1	$%V_{NOM}$
Transient response	25% to 75% load transient, at 0.25A/µs; recovery to within 10% of V _{SET}			3 100	V μs
Turn on rise time	Monotonic, 10% to 90%	1.5		3.5	ms
Turn on overshoot	IVIOLOGIUC, 1070 to 7070	1.0		0.1	%V _{SET}
	From AC on to Power Good		600	750	ms
Turn on delay	From Enable to Power Good		15	20	ms
Current sharing accuracy	Trom Enable to Fower Good		13	5	%I _{MAX}
Open sense offset	Open sense, voltage offset due to bias currents			2	%V _{NOM}
Hold-up voltage	54.1.5.1.16			50	V
Isolation to ground	Each terminal			250	V
Over current protection	% of rated current	105		125	%I _{RATED}
Reverse current protection	% of rated current	-6		0	%I _{RATED}
Short circuit protection (Hiccup mode)	Period Duty cycle Voltage threshold (at sense)	J	125 3 3.5		ms % V
Over voltage protection	Latching		66		V
Over temperature protection	Internally monitored, latching	115	00	125	°C
·	On positive terminal	-3		3	
Sense cable protection	On negative terminal	none		2	V
Power good threshold	Low threshold only	TIOTIC	90	_	%V _{SET}
Output current signal	$I_{SGN} = 0.6 + I_{OUT}/(I_{RTD}*1.25)$	0	,,	110	%I _{RATED}
Current limit control	$I_{LMT} = (V_{CTRL} - 0.6) * I_{RTD} * 1.25$	0		110	%I _{RATED}
Remote voltage control	$V_{OUT} = V_{SET} ((1.8 - V_{CTRL}) / 0.6)$	0		300	%V _{SET}
Bias supply	10 mA max	4.5	5	5.2	V 3E1
Reliability	At 40 °C, 80% load		•	1	FPMH
Warranty				2	Years
Wire size	Power cables	20	18	10	AWG
Weight				60	g
Size	60 mm x 35 mm x 17 mm (2.36 in x 1.38 in	x 0 67 in)			3

OUTPUT SPECIFICATIONS – MODULE W (RCA-OPW)

Parameter	Test conditions / Notes	Min	Nominal	Max	Units
Voltage range	Each channel	3.3	12	15	V
Rated current	Each channel			5.0	Α
Rated power	Each channel			75	W
Initial voltage accuracy	Factory set units	-1		1	$\% V_{SET}$
Voltage adjustment	Manual: 11-turns potentiometer		1.1		V/turn
Load regulation	Measured at sense terminals	-50		50	mV
Line regulation	Measured at sense terminals	-0.1		0.1	$%V_{NOM}$
Cross regulation	Measured at sense terminals	-0.2		0.2	$%V_{NOM}$
Minimum load			0		Α
Temperature drift		-0.02		0.02	%/°C
Ripple and Noise	20 MHz bandwidth, peak-to-peak			2	$%V_{NOM}$
	V _{SET} : 12 V				
Transient response	25% to 75% load transient, at 1A/µs,			1	V
	recovery to within 10% of V _{SET}			200	μs
Turn on rise time	Monotonic, 10 to 90 %	4.5	5.5	6.5	ms
Turn on overshoot				0.1	$%V_{SET}$
Turn on delay	From AC on (120 V _{AC}) to Power Good	250		350	ms
•	From Enable to Power Good	15		25	
Hold-up voltage				12	V
V1/V2 Isolation to ground	Each terminal			250	V
Isolation V1 to V2	Each terminal			250	V
Over current protection	Hiccup mode	105		125	%I _{RATED}
Reverse current protection	None				%I _{RATED}
Short circuit protection	Hiccup period		50		ms
·	Hiccup duty cycle		25		%
Over voltage protection	Latching	19	20	21	V
Over temperature protection	Internally monitored, latching	115		125	°C
Power good threshold	High threshold	90	94	98	%V _{SET}
1 ower good threshold	Low threshold only	88	92	95	10 A 2F1
Reliability	At 40 °C, 80% duty cycle, 100% load Telcordia SR-332 Issue 2			1	FPMH
Warranty				2	Years
Wire size	Power cables	20	18	10	AWG
Size and weight	27.5 x 65.9 x 15.7 mm (1.08 x 2.59 x 0.62 i	n); 60 g (2.1 o	<u>z</u>)		

OUTPUT SPECIFICATIONS - MODULE Z (RCA-OPZ)

Parameter	Test conditions / Notes	Min	Nominal	Max	Units
Voltage range	Each channel	15	24	38	V
Rated current	Each channel at 24V output. De-rating applies over 24V output			3.125	Α
Rated power	Each channel			75	W
Initial voltage accuracy	Factory set units	-1		1	$\% V_{SET}$
Voltage adjustment	Manual: 11-turns potentiometer		2.2		V/turn
Load regulation	Measured at sense terminals	-50		50	mV
Line regulation	Measured at sense terminals	-0.1		0.1	$%V_{NOM}$
Cross regulation	Measured at sense terminals	-0.2		0.2	$%V_{NOM}$
Minimum load			0		Α
Temperature drift		-0.02		0.02	%/°C
Ripple and Noise	20 MHz bandwidth, peak-to-peak			2	$%V_{NOM}$
Transient response	V_{SET} : 24 V 25% to 75% load transient, at 1A/ μ s, recovery to within 10% of V_{SET}			1 100	V µs
Turn on rise time	Monotonic, 10 to 90 %	1.5		3.5	ms
Turn on overshoot				0.1	%V _{SET}
Turn on delay	From AC On (120 V _{AC}) to Power Good From Enable to Power Good	250 15		350 25	ms
Hold-up voltage				24	V
V1/V2 Isolation to ground	Each terminal			250	V
Isolation V1 to V2	Each terminal			250	V
Over current protection	Hiccup mode	105		125	%I _{RATED}
Reverse current protection	None				%I _{RATED}
Short circuit protection	Hiccup period Hiccup duty cycle		50 25		ms %
Over voltage protection	Latching	44		46	V
Over temperature protection	Internally monitored, latching	115		125	°C
Dower good throshold	High threshold	90	94	98	0/1/
Power good threshold	Low threshold only	88	92	95	$%V_{SET}$
Reliability	At 40 °C, 80% duty cycle, 100% load Telcordia SR-332 Issue 2			1	FPMH
Warranty				2	Years
Wire size	Power cables	20	18	10	AWG
Size and weight	27.5 x 65.9 x 15.7 mm (1.08 x 2.59 x 0.62 ir	n); 60 g (2.1 oz	<u>z</u>)		

Specifications appearing in ENEDO's catalogues and brochures as well as any oral statements are not binding. All descriptions, drawings and other particulars (including dimensions, materials and performance data) given by ENEDO are as accurate as possible but, being given for general information, and are not binding on ENEDO. ENEDO makes thus no representation or warranty as to the accuracy of such material. We assume no liability other than as agreed in the terms of the individual contracts and we reserve the right to make technical modifications in the course of our product development. Our product information solely describes our goods and services and is in no way to be construed or interpreted as a quality or condition guarantee. The aforesaid shall not relieve the customer of its obligation to verify the suitability of our Products for the use or application intended by the purchaser. Customers are responsible for their products and applications. ENEDO assumes no liability from the use of its products outside of specifications. No license is granted to any intellectual property rights by this document.