

Main Features

- Universal input voltage range (90 305 V_{AC})
- Input surge current limiting (< 20 A)
- 340 W at natural convection, 460 W forced air cooling,
 520 W temporary (10 s)
- Open frame, 3 x 5" industrial standard footprint
- High efficiency up to 94.5%
- 24, 48 and 56 V_{DC} standard output voltages
- Low stand-by consumption (<0.35 W)
- Active PFC, EN61000-3-2 compliant (Class C, >20% load)
- Low earth / touch leakage current (<250 / 100 μA)
- Over temperature, OV, OC and SC protections.
- Stand by +5 V, 1 A output.
- Remote On / Off signal
- Power good and remote sense signals
- Medical IEC 60601-1 3rd edition certified,
 2x MoPP rated and BF appliances compatible.
- IEC 60601-1-2 4th edition EMC compliant.
- RoHS 3 compliant (Directive EU 2015/863)
- · Compatible with 5000 m altitude operation
- · Protective cage option available

DESCRIPTION

The MDP520 series of medical grade AC-DC power supplies provide the compact form factor and high efficiency that the marketplace demands.

The series can provide 460 W of regulated DC power and 520 W peak operating over 90 to 305 V_{AC} input voltage range, in a 3.0 x 5.0 x 1.51" form factor. The MDP520 series comes in an open frame compact package to facilitate system integration and thermal management in space constraint and closed environments, thanks also to its 94% high efficiency which generate less heat.

The series comes in 24, 48 and 56 V_{DC} standard output voltages with additional 12, or 36 V_{DC} output voltages variants which will be available upon business case evaluation. It offers a +5 V_{DC} stand-by output capable of 1 A. Available control signals include Power Good (P_OK), Remote On / Off (PS_Inhibit) and Sense terminals (RS⁺).

The series can be operated over the -40 to 70 °C ambient temperature range with output power derating factor applied above 50 °C and below -20 °C start up.

Protection features include slow blow fuses on both AC lines, input under voltage lockout (IUV), output over-current (OC), output short-circuit (SC), output over-voltage (OV) and over-temperature (OT).

The MDP520 Free Air series complies with the 3rd edition of the IEC60601-1 and ANSI/AAMI ES/EN 60601-1 safety standards for medical equipment requiring 2x MoPP protection grade. It is suitable for BF rated medical equipment under specific conditions.

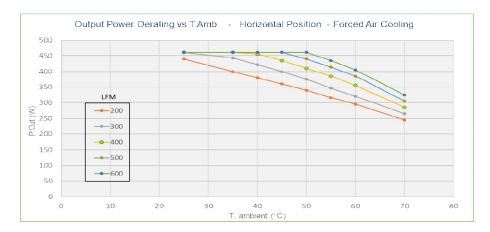
The MDP520 Free Air series meets the EN 60601-1-2 EMC limits of Class B for conducted and radiated emissions as well as the IEC/EN61000-3 for flicker and harmonics content. It also meets the IEC 60601-1-2 4th edition for EMC immunity.

MARKET SEGMENTS AND APPLICATIONS

- Diagnostic Equipment
- Dialysis Equipment
- Surgical Device
- Monitoring Devices
- Hospital Beds

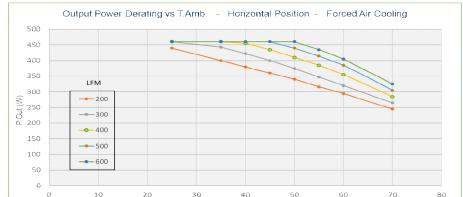
- Ultrasound / EM Therapy Devices
- Imaging Equipment
- Clinical Analyzer
- Ventilator
- · Home health Care

MDP520 Series

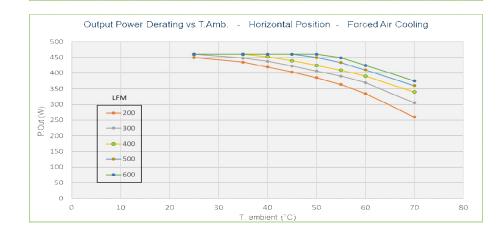


MODEL CODING AND OUTPUT RATINGS

Model Code	V _{out} Nominal	V _{AC} Range	Іоит	I _{SB}	Cooling Mode	Max Combined Output Power
	[V _{DC}]	[V]	[A]	[A]		[W]
	-	<u>≥</u> 90	TBD	1.0		TBD
MDP520-US12-OF	12 -	<u>≥</u> 100	TBD	1.0	Natural Convection	TBD
		<u>></u> 180	TBD	1.0		TBD
		90-305	TBD	1.0	> 600 LFM forced air	TBD
	_	<u>></u> 90	TBD	1.0		TBD
MDP520-US12-PC	12 -	<u>≥</u> 100	TBD	1.0	Natural Convection	TBD
	-	<u>≥</u> 180	TBD	1.0	40015145	TBD
		90-305	TBD	1.0	> 600 LFM forced air	TBD
	_	<u>></u> 90	14.1	1.0		340
MDP520-US24-OF	24 -	<u>></u> 100	15	1.0	Natural Convection	360
WIDT 020 0021 01	_	<u>></u> 180	17.3	1.0		415
		90-305	19.2	1.0	> 600 LFM forced air	460
	_	<u>≥</u> 90	14.1	1.0		310
MDP520-US24-PC	_	<u>></u> 100	15	1.0	Natural Convection	340
IVIDP020-U324-PG	24	<u>></u> 180	17.3	1.0		390
		90-305	19.2	1.0	> 600 LFM forced air	460
		<u>≥</u> 90	TBD	1.0		TBD
MDDE20 HC2/ OF	27	<u>≥</u> 100	TBD	1.0	Natural Convection	TBD
MDP520-US36-OF	36	<u>≥</u> 180	TBD	1.0		TBD
	-	90-305	TBD	1.0	> 600 LFM forced air	TBD
		<u>≥</u> 90	TBD	1.0		TBD
MDDE20 HC27 DC	24	<u>≥</u> 100	TBD	1.0	Natural Convection	TBD
MDP520-US36-PC	36 -	<u>≥</u> 180	TBD	1.0		TBD
	-	90-305	TBD	1.0	> 600 LFM forced air	TBD
		<u>></u> 90	7.1	1.0		340
MDD500 H040 O5	-	<u>></u> 100	7.5	1.0	Natural convection	360
MDP520-US48-OF	48 -	<u>></u> 180	9.6	1.0		460
	-	90-305	9.6	1.0	>600 LFM forced air	460
		<u>></u> 90	7.1	1.0		310
MADDEOO 11040 DO	-	<u>≥</u> 100	7.5	1.0	Natural convection	340
MDP520-US48-PC	48 -	<u>></u> 180	9.6	1.0		390
	-	90-305	9.6	1.0	>600 LFM forced air	460
		<u>></u> 90	6.25	1.0		350
		<u>≥</u> 100	6.6	1.0	Natural convection	370
MDP520-US56-OF	56 -	<u>≥</u> 180	8.2	1.0	†	460
	-	90-305	8.2	1.0	>600 LFM forced air	460
		<u>></u> 90	6.25	1.0		310
	-	<u>_</u> ≥100	6.6	1.0	Natural convection	340
MDP520-US56-PC	56 -	<u>_</u> .180	8.2	1.0	1	390
	-	90-305	8.2	1.0	>600 LFM forced air	460


OUTPUT POWER DERATING CURVES

 $V_{IN}: \ge 90 V_{AC}$



ambient (°C)

 $V_{IN}: \underline{>} 90 V_{AC}$

V_{OUT}: 24 V_{DC}

 $V_{\text{IN}} : \underline{>} 115 V_{\text{AC}}$

T. ambient (°C)

 $V_{\text{OUT}}\text{: }48\text{, }56\text{ }V_{\text{DC}}$

 V_{IN} : $\geq 115 V_{AC}$

50

60

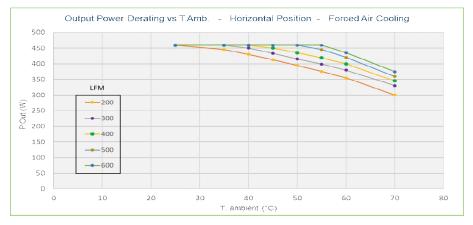
70

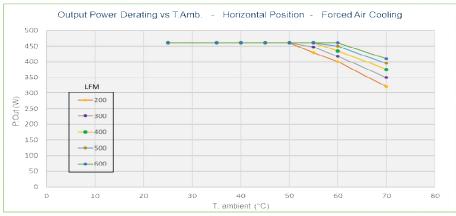
80

10

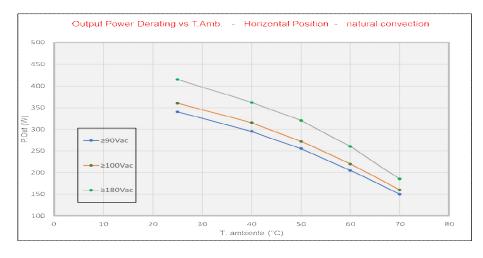
20

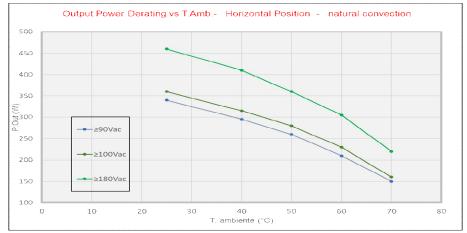
30



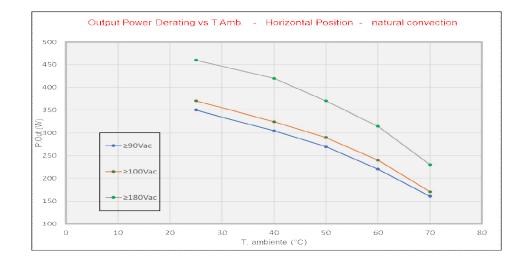

MDP520 SERIES

V_{IN} : $\geq 180 V_{AC}$

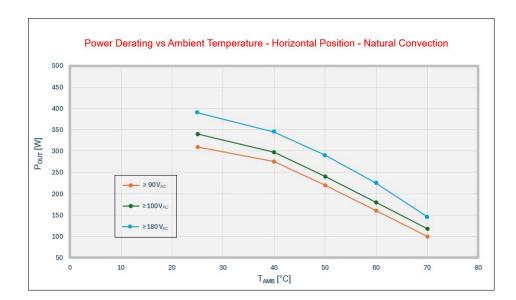



V_{IN} : $\geq 180 V_{AC}$

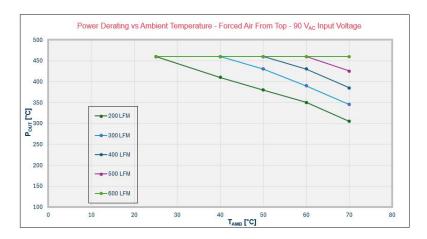
V_{OUT}: 24 V_{DC}

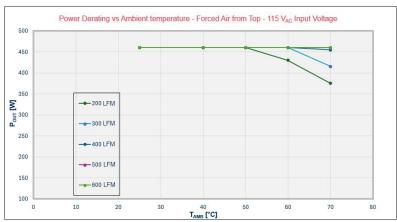


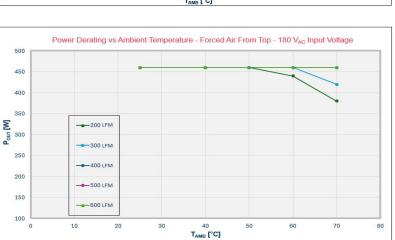
 V_{OUT} : 48 V_{DC}



MDP520 SERIES



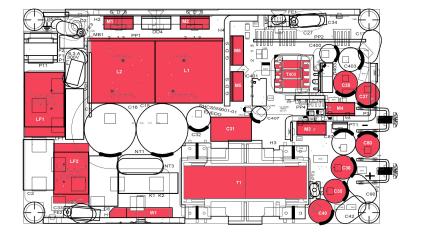




V_{OUT}: 24, 48, 56 V_{DC}

The above curves come from a climatic static chamber and a specific set up therefore they represent a thermal performance approximation of a MDP520 installed into a system where not all the variables can be controlled. Although they are a reasonable reference, it is always a recommended practice to monitor the power supply critical components temperature when operating into a system (see below hot-spots thermal map).

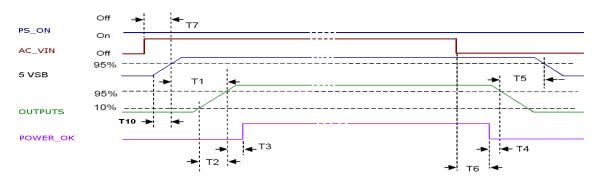
INPUT SPECIFICATIONS


Specification	Test Conditions / Note	es .		Min.	Nominal	Max.	Units
AC Input Voltage	PS starts and operates conditions	at 85 V _{AC} at all load		90	100 ÷ 277	305	V_{RMS}
DC Input Voltage				170	-	300	V_{DC}
Input Frequency	440 Hz with reduced Pl rating - Consult factory		er	47	50/60	440	Hz
Input Current	RMS at 180 V _{AC} , maxim RMS at 85 V _{AC} , maximu		Z	-	-	3.5 7.0	Α
Inrush Current (peak)	Cold start, 25 °C ambie	nt, full load	115 V _{AC} 230 V _{AC} 277 V _{AC}	- - -	- - -	10 20 24	А
Fusing	Slow blow, 8A, 250V or	n each AC lines.		-	-	8	Α
Efficiency	50'	% rated load % rated load % rated load		- - -	89 93 92	- - -	%
	50%	6 rated load 6 rated load 6 rated load		-	90 94 94.5	- - -	70
Input Power Consumption	Power on, 115 V _{AC} , no Power on, 230 V _{AC} , no Stand by, 115, 230 V _{AC} ,	load		- - -	- - -	4 4 0.35	W
Power Factor	From 50 to 100% of rat 277, 230, 115 V _{AC} , 50 / input voltages.			0.90	-	-	-
THDi	From 50 to 100% rated 60 Hz.	load, 115, 230, 27	7 V _{AC} 50 /	-	-	20	%
Harmonic Current Fluctuations and Flicker	Complies with EN 6100 Complies with EN 6100 Complies with EN 6100 Complies with EN 6100	0-3-2 Class C at 230 0-3-2 Class D at 23	0 V _{AC} , 50/60 0 V _{AC} , 50/60	Hz, >150 \ Hz, >35 W			
Earth Leakage Current	Normal conditions 115 V _{RMS} , 60 Hz 230 V _{RMS} , 50 Hz 264 V _{RMS} , 60 Hz (worst 277 V _{RMS} , 60 Hz		Ů	-	100 180 200 250	- - - 290	μΑ
Touch Leakage Current	264 V _{RMS} , 60 Hz Normal Condition (NC) Single Fault Condition	(SFC)		-	-	100 500	μΑ
Patient Leakage Current	264 V _{RMS} , 60 Hz Normal Condition (NC) Single Fault Condition	(SFC)		-	-	100 500	μΑ

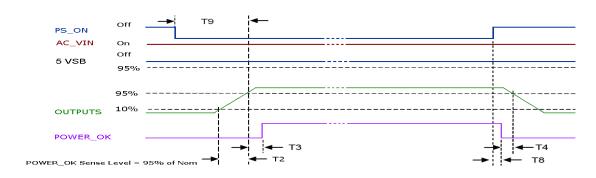
OUTPUT SPECIFICATIONS

Specification	Test Conditions / Notes	Min.	Nom.	Max.	Units
V1 Output Voltages	±0.5% set point accuracy, 20% load	-	12 24 36	-	V
			48 56		
V1 Output Power Rating	Natural Convection (see graph above) Forced air cooling (see graph above) Peak power	- - -	- - -	460 460 520	W
5V _{SB} Output Voltage	±3% set point accuracy, 20% load	-	5	-	V
5V _{SB} Output Current		-	-	1.0	Α
V1 Voltage Adjustment Range	Manually by potentiometer	-	-	±5	%V1
V1 Load-Line-Cross Regulation	V _{AC} : 85 – 305 V _{RMS} ; I1: 0 – 100%	-	-	±2	%V1
5V _{SB} Load-Line-Cross regulation	V _{AC} : 85 – 305 V _{RMS} ; I _{SSB} : 0 – 100%	-	-	±5	%5V _{SB}
V1 Line Regulation	V _{AC} : 85 – 305 V _{RMS}	-	-	±0.1	%V1
Transient Response: V1, 5V _{SB} Voltage Deviation	50% load changes at 1 A/µs 0.5 A load minimum load applied	-	-	±5	%V1 %5V _{SB}
V1 Ripple and Noise	Rated load, Peak-to-peak, 20 MHz BW. (100 nF ceramic, 10 µF tantalum at load)	-	-	1	%V1
V1 Start-up Rise Time	$85 < V_{IN} < 305$, any load conditions.	10	-	100	ms
Start-up Delay	V1 in regulation after de-asserting PS_ON V1 in regulation after AC is applied (worst case: 85 V _{AC})		-	200 750	mo
	$5V_{SB}$ in regulation after AC is applied (worst case: 85 V_{AC})	-	-	500	ms
Turn-on Overshoot		-	-	5 5	%V1 %V _{SB}
V1 Hold-up Time	At nominal V _{IN} , full load	16	-	-	ms
Minimum Load	V1and 5V _{SB}	0	-	-	Α
Maximum Load Capacitance	V1: 12 V _{DC}	-	-	28000	
	V1: 24 V _{DC}	-	-	14000	E
	V1: 36 V _{DC} V1: 48 V _{DC}	-	-	12000 10000	μF
	V1: 54 V _{DC}	-	-	8000	

To ensure the power supply proper operation when installed in a system or device, the hot-spots components operating temperature should not exceed the corresponding maximum limits shown in the table alongside.


Hot Components PCB Reference	Maximum Operating Temperature [°C]
T1	130
T400	110
W1	125
LF1, LF2	120
L1, L2	120
M1, M2	120
M3, M4	120
M5, M6	120
C31	105
C35, C36, C40, C80	105
C37, C38	105
007,000	100

SIGNALS / CONTROLS


Signal	Notes	Min	Тур	Max	Unit
PS_ON	Active low, +5 V TTL signal compatible. Input low voltage	0	-	2.0	V
	Input high voltage (I _{IN} = 200 µA)	3.0	-	-	V
	V1 and V2 disabled when PS_ON is open				
	5V _{SB} not affected by PS_ON				
	V1 and V2 enabled with PS_ON connected to RTN				
P_OK	+5 V TTL compatible				
	Logic level low (<10 mA sinking)	-	-	0.7	V
	Logic level high (100µA sourcing)	2.4	-	5	V
	Low to high time after V1 in regulation	0.05	-	0.1	S
	Power down warning time	1	-	-	ms
5V _{SB} output	Active and in regulation after a 90 <v<sub>AC<264 is applied</v<sub>	-	-	200	ms
	5V _{SB} not affected by PS_ON				

SIGNALS TIMING

Above waveforms are expected with AC Input ON/OFF:

5 V_{SB} On – V1 On 50 ms ≤ T1 ≤ 250 ms V1 Rise Time $5 \text{ ms} \le T2 \le 85 \text{ ms}$ 5 V_{SB} Rise Time 1 ms ≤ T10 ≤ 10 ms V1 On – P_OK delay $30 \text{ ms} \le T3 \le 100 \text{ ms}$ Power down warning¹ T4 ≥ 5 ms V1 Off - 5V_{SB} Off² T5 ≥ 1.2 s AC Off - P_OK Low $T6 \ge 10 \text{ ms} (115/230 \text{ V}_{AC})$ AC_ON - 5V_{SB} turn On time T7 ≤ 1000 ms

Above waveforms are expected with PS_ON Signal ON/OFF state change:

 $\begin{array}{lll} \mbox{V1 Rise Time} & 5 \mbox{ ms} \leq \mbox{T2} \leq \mbox{85 ms} \\ \mbox{V1 On } -\mbox{P_OK delay} & 30 \mbox{ ms} \leq \mbox{T3} \leq \mbox{100 ms} \\ \mbox{Power down warning1} & 1 \mbox{ ms} \leq \mbox{T4} \leq \mbox{5 ms} \\ \mbox{-PS_ON} -\mbox{P_OK down} & \mbox{T8} \leq \mbox{1 ms} \\ \mbox{-PS_ON} -\mbox{V1 On Timing} & \mbox{T9} \leq \mbox{200 ms} \\ \end{array}$

 $^{^1\}mathrm{T4}$ parameter measurement setup will assume at least 10% of the maximum load on each output.

² T5 parameter measurement setup will assume at least 50% of the maximum load on main output.

PROTECTION FEATURES

Specification	Test Conditions / Notes	Min.	Nominal	Max.	Units	
Input Under Voltage	Auto-recovering, hiccup mode.	58	65	75	V_{AC}	
Input Fuse	8 A 300 V _{AC} Time Lag Radial Fuse T/H	-	-	8	Α	
Over Current	At nominal input voltages					
	V1: Hiccup mode, auto-recovering	115	-	160	%I1 _{Rated}	
Chart Cinned	5V _{SB} : Hiccup mode, auto-recovering:	-	-	-		
Short Circuit	At nominal input voltages V1: Hiccup mode, auto-recovering.					
	5V _{SB} : Hiccup mode, auto-recovering.	-	-	-		
Over Voltage	V1, Power shut down, latch off.	110	-	145	0/1/	
J	5V _{SB} , Hiccup mode, auto-recovering.	-	-	150	%V _{NOM}	
Over Temperature	Hiccup mode, auto-recovering.	_	_	_	°C	
(on secondary and primary side)						
Isolation: Input-to-Output	Reinforced (2x MoPP)	6000	-	-	V_{DC}	
Isolation: Input-to-Earth	Basic (1x MoPP)	4250 2545	-	-	V _{AC}	
isolation. Input-to-Lai tri	Dasic (TX IVIOLT)	1800	-	- -	VDC	
	Production tested at 2545 V _{DC}	.000			• Ac	
Isolation: Output-to-Earth	Basic (1x MoPP)	2121	-	-	V_{DC}	
		1500	-	-	V_{AC}	
Means Of Protection:	2x MoPP (IEC 60601-1 3rd edition) at 100 – 25					
Primary to secondary	2x MoPP (IEC 60601-1 3 rd edition) at 100 – 2 rd					
Means Of Protection:	2x MoOP (IEC 60601-1 3 rd edition) at 100 – 2		,			
Primary to Protection Earth	1x MoPP (IEC 60601-1 3rd edition) at 100 – 25					
Trimary to Frotection Laitin	1x MoPP (IEC 60601-1 3 rd edition) at 100 – 277 V _{AC} , 50/60 Hz up to 3000 m 1x MoOP (IEC 60601-1 3 rd edition) at 100 – 277 V _{AC} , 440 Hz (50/60 Hz)					
Means Of Protection:	1x MoPP (IEC 60601-13 rd edition) at 100 – 25					
Secondary to Protection Earth	1x MoPP (IEC 60601-1 3 rd edition) at 100 – 277 V _{AC} , 50/60 Hz up to 3000 m (U-chassis variant only)					
	1x MoOP (IEC 60601-1 3 rd edition) at 100 – 277 V_{AC} , 440 Hz (U-chassis variant only)					
Equipment Protection Class	Class I, com	npatible with BF (Bod	ly Floating) ME			

ENVIRONMENTAL SPECIFICATIONS

Specification	Test Conditions / Notes	Min	Nominal	Max	Units
Operating Temperature Range	Start up at -40 °C at <20% load. No de-rating up to 50°C at >600LFM	-40	-	50	°C
Operating Temperature Range with De-rating	See de-rating curves and conditions in the Output Specifications section	-	-	70	°C
Storage Temperature		-40	-	85	°C
Humidity	RH, Non-condensing Operating. Non-operating	-	-	90 95	% %
Operating Altitude	MoPP (100 – 250 V _{AC} , 50/60 Hz) MoPP (100 – 277 V _{AC} , 50/60 Hz) MoOP, ITE grade Power de-rating above 1800 m	- - -	- - -	4000 3000 5000	m
Shock	EN 60068-2-27 Operating: Half sine, 30 g, 18 ms, 3 axes, 6x eac Non-Operating: Half sine, 50 g, 11 ms, 3 axes, 6x eac	· ·	,		
Vibration	EN 60068-2-64 Operating: Sine,10 – 500 Hz, 1 g, 3 axes, 1 oct/r Random, 5 – 500 Hz, 0.02 g²/Hz, 1 g, Non-Operating: 5 – 500 Hz, 2.46 g _{RMS} (0.0122 g²/Hz),	_{RMS} , 3 axes, 30 m	in.		
MTBF	Full Load, 40 °C ambient 80% Duty cycle, Telcordia SR-332 Issue 2	400.000	-	-	Hours
Useful Life	Worst nominal V _{IN} , 80% load, 40 °C ambient.	-	5	-	Years

ELECTROMAGNETIC COMPATIBILITY (EMC) – EMISSIONS

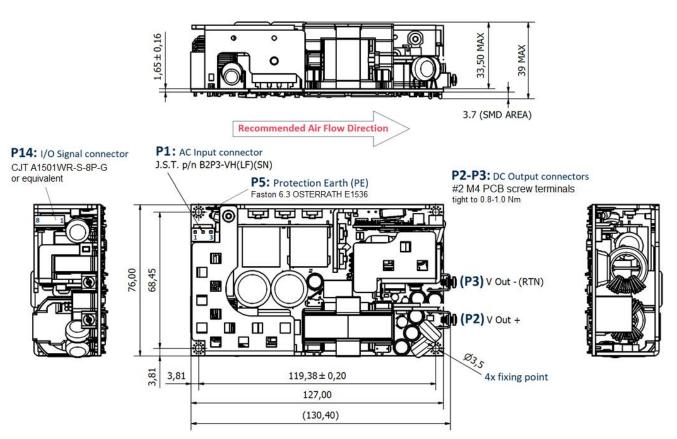
Phenomenon	Conditions / Notes	Standard	Equipment/Performance Class
Conducted	115, 230, 277 V _{RMS} . Maximum load.	EN 55011 (ISM) EN 60601-1-2 (Medical)	В
Radiated	At 10 m distance	EN 55011 (ISM) EN 60601-1-2 (Medical)	A^3
Line Voltage Fluctuation and Flicker	At 20%, 50% and 100% maximum load. Nominal input voltages	EN 61000-3-3	
Harmonic Current	230 V _{AC} input voltage, 50 / 60 Hz	EN 61000-3-2	Α
Emission	230 V _{AC} 50 / 60 Hz, >150 W load	EN 61000-3-2	С
	230 V _{AC} 50 / 60 Hz, >40 W load	EN 61000-3-2	D

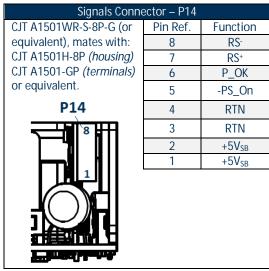
³ Radiated emissions should be assessed at system level.

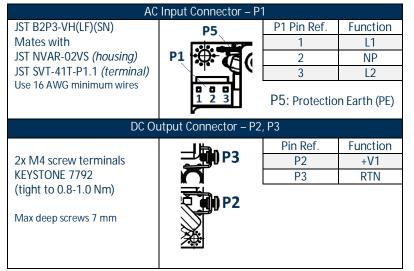
ELECTROMAGNETIC COMPATIBILITY (EMC) – IMMUNITY

Phenomenon	Conditions / Notes	Standard	Test Level	Criteria
	Reference standard for the medical version	EN 60601-1		
	Reference standard for Industrial/IMS equipment	EN 61000-6-2		
ESD	15 kV air discharge, 8 kV contact, at any point of the system.	EN 61000-4-2	4	Α
Radiated Field	10 V/m, 80-1000 MHz, 1 KHz, 80% AM.	EN 61000-4-3	3	Α
Electric Fast Transient	±2 kV on AC power port for 1 minute	EN 61000-4-4	3	Α
Surge	±2 kV line to line; ± 4 kV line to earth on AC power port	EN 61000-4-5	4	Α
Conducted RF Immunity	10 V _{RMS} , 0,15-80 MHz, 1 kHz/2 Hz 80% AM	EN 61000-4-6	3	Α
Dips and Interruptions	200 – 277 V _{AC} :			
	Drop-out to 0% for 10 ms	EN61000-4-11		Α
	Dip to 40% for 5 cycles (100 ms)	EN61000-4-11		Α
	Dip to 70% for 25 cycles (500 ms)	EN61000-4-11		Α
	Drop-out to 0% for 5 s	EN61000-4-11		В
	100 – 127 V _{AC} :			
	Drop-out to 0% for 10 ms	EN 61000-4-11		Α
	Dip to 40% for 5 cycles (100 ms)	EN 61000-4-11		B (derating TBD)
	Dip to 70% for 25 cycles (500 ms)	EN 61000-4-11		A (derating TBD)
	Drop-out to 0% for 5 s	EN 61000-4-11		В

SAFETY AGENCIES APPROVALS

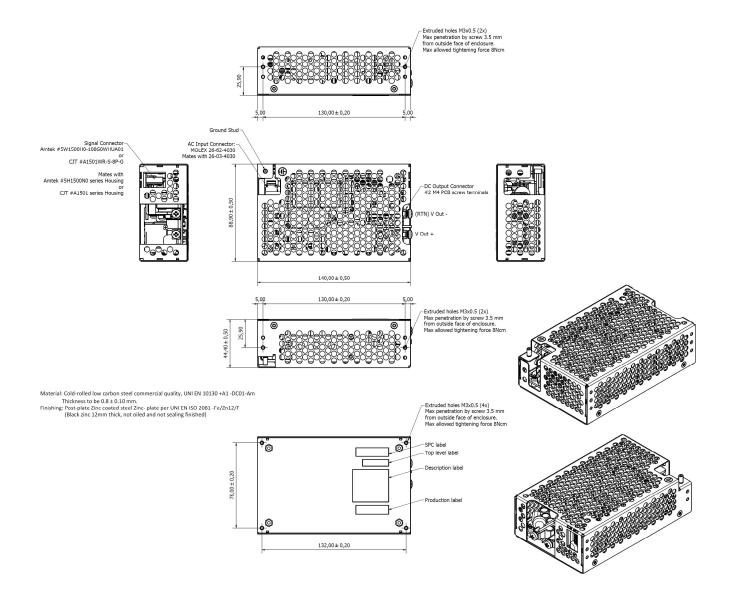

Certification Body	Safety Standards and file numbers	Category
	CSA C22.2 No.60601-1, ANSI/AAMI ES60601-1 3rd edition + A1	Medical
IEC IECEE CB Certification	IEC/EN 60601-1 3 rd edition+A1	Medical
CE	Directive 2014/35/EU: Electrical Safety: Low Voltage electrical equipment (LVD)	Information Technology Equipment
	Directive 93/42/CEE: Safety Requirement of the Medical Device	Medical
	Directive 2014/30/EU: Electromagnetic Compatibility (EMC)	
	Directive EU 2015/863: RoHS 3	
	Designed to meet IEC/EN/UL/CSA 61010-1 2 nd edition and IEC/EN 60335	-1 or IEC/EN 61558-1




OUTLINE DRAWING AND CONNECTIONS - OPEN FRAME CHASSIS (-OF)

Overall dimensions: 76.2 x 127.0 x 38.5 mm (3.00 x 5.00 x 1.51 in)

Weight: 400 g (0.88 lb)



OUTLINE DRAWING AND CONNECTIONS - PROTECTIVE CAGE (-PC)

Specifications appearing in ENEDO's catalogues and brochures as well as any oral statements are not binding. All descriptions, drawings and other particulars (including dimensions, materials and performance data) given by ENEDO are as accurate as possible but, being given for general information, and are not binding on ENEDO. ENEDO makes thus no representation or warranty as to the accuracy of such material. We assume no liability other than as agreed in the terms of the individual contracts and we reserve the right to make technical modifications in the course of our product development. Our product information solely describes our goods and services and is in no way to be construed or interpreted as a quality or condition guarantee. The aforesaid shall not relieve the customer of its obligation to verify the suitability of our Products for the use or application intended by the purchaser. Customers are responsible for their products and applications. ENEDO assumes no liability from the use of its products outside of specifications. No license is granted to any intellectual property rights by this document.